March 29, 2015

Post puzzles for others to solve here.

March 29, 2015

Postby ArkieTech » Sat Mar 28, 2015 9:24 pm

Code: Select all
 *-----------*
 |7.6|...|...|
 |...|.8.|5..|
 |...|7.9|..1|
 |---+---+---|
 |..2|.5.|.74|
 |.6.|...|.8.|
 |53.|.6.|9..|
 |---+---+---|
 |6..|2.8|...|
 |9.5|.7.|...|
 |...|..5|7.9|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: March 29, 2015

Postby pjb » Sat Mar 28, 2015 11:04 pm

Code: Select all
 7       14      6      | 5      3      24-1   | 24     9      8     
 12      1249    19     |a14     8      6      | 5      3      7     
 38      5       38     | 7     b24     9      | 24     6      1     
------------------------+----------------------+---------------------
 18      189     2      | 1389   5     d13     | 6      7      4     
 4       6       179    | 19     12     127    | 3      8      5     
 5       3       78     | 48     6      47     | 9      1      2     
------------------------+----------------------+---------------------
 6       7       4      | 2      9      8      | 1      5      3     
 9       12      5      | 134    7     d134    | 8      24     6     
 1238    128     138    | 6     c14     5      | 7      24     9     

(1=4)r2c4 - r3c5 = r9c5 - (4=13)r48c6 => -1 r1c6; stte

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: March 29, 2015

Postby Marty R. » Sun Mar 29, 2015 1:02 am

Code: Select all
+---------------+-------------+---------+
| 7    14   6   | 5    3  124 | 24 9  8 |
| 12   1249 19  | 14   8  6   | 5  3  7 |
| 38   5    38  | 7    24 9   | 24 6  1 |
+---------------+-------------+---------+
| 18   189  2   | 1389 5  13  | 6  7  4 |
| 4    6    179 | 19   12 127 | 3  8  5 |
| 5    3    78  | 48   6  47  | 9  1  2 |
+---------------+-------------+---------+
| 6    7    4   | 2    9  8   | 1  5  3 |
| 9    12   5   | 134  7  134 | 8  24 6 |
| 1238 128  138 | 6    14 5   | 7  24 9 |
+---------------+-------------+---------+

Play this puzzle online at the Daily Sudoku site

XY-Wing (12-4), pivot r8c2 with pincers at r1c2 and r8c8.
Transport the 4 from r1c2 to r2c4 via r2c2 and transport the 4 from r8c8 to r9c5 via r9c8 => r3c5, r8c4<>4.

Here's the embarrassing part. I couldn't figure out how to notate it in one string.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: March 29, 2015

Postby pjb » Sun Mar 29, 2015 1:13 am

How about:
(4)r9c5 = r9c8 - (4=2)r8c8 - (2=1)r8c2 - (1=4)r1c2 - r2c2 = r2c4

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: March 29, 2015

Postby SteveG48 » Sun Mar 29, 2015 1:52 am

Code: Select all
 *------------------------------------------------------------*
 | 7     1-4   6     | 5     3    a124A  |ag24A   9     8     |
 | 12    1249  19    |b14B   8     6     |  5     3     7     |
 | 38    5     38    | 7    e24B   9     | f24    6     1     |
 *-------------------+-------------------+--------------------|
 | 18    189   2     | 1389  5     13    |  6     7     4     |
 | 4     6    d179D  |d19C  d12C   127   |  3     8     5     |
 | 5     3    c78D   |b48C   6     47    |  9     1     2     |
 *-------------------+-------------------+--------------------|
 | 6     7     4     | 2     9     8     |  1     5     3     |
 | 9     12    5     | 134   7     134   |  8     24    6     |
 | 1238  128   138   | 6     14    5     |  7     24    9     |
 *------------------------------------------------------------*


(4=12)r1c67 - (1=48)r26c4 - (8=7)r6c3 - (7=192)r5c345 - (2)r3c5 = (2-4)r3c7 = (4)r1c7 => -4 r1c2 ; stte

Or essentially the same thing, but I'm curious if folks would find this palatable:

(4=12)r1c67 - (1=24)r2c4,r3c5 - (24=189)r5c45,r6c4 - (189=7)r56c3 contradiction => -4 r1c2
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: March 29, 2015

Postby Leren » Sun Mar 29, 2015 2:09 am

Code: Select all
*--------------------------------------------------------------*
| 7    d14    6      | 5     3     124    |e24    9     8      |
| 12    1249  19     | 14    8     6      | 5     3     7      |
| 38    5     38     | 7     2-4   9      |f24    6     1      |
|--------------------+--------------------+--------------------|
| 18    189   2      | 1389  5     13     | 6     7     4      |
| 4     6     179    | 19    12    127    | 3     8     5      |
| 5     3     78     | 48    6     47     | 9     1     2      |
|--------------------+--------------------+--------------------|
| 6     7     4      | 2     9     8      | 1     5     3      |
| 9    c12    5      |b134   7    b134    | 8     24    6      |
| 1238  128   138    | 6    a14    5      | 7     24    9      |
*--------------------------------------------------------------*

W Wing with transport : (4=1) r9c5 - r8c46 = r8c2 - (1=4) r1c2 - r1c7 = (4) r3c7 => - 4 r3c5; stte, or

Code: Select all
*--------------------------------------------------------------*
| 7     14    6      | 5     3     124    | 24    9     8      |
| 12    1249  19     | 1-4   8     6      | 5     3     7      |
| 38    5     38     | 7    a24    9      | 24    6     1      |
|--------------------+--------------------+--------------------|
| 18    189   2      | 1389  5     13     | 6     7     4      |
| 4     6     179    | 19   b12   c127    | 3     8     5      |
| 5     3     78     |e48    6    d47     | 9     1     2      |
|--------------------+--------------------+--------------------|
| 6     7     4      | 2     9     8      | 1     5     3      |
| 9     12    5      | 134   7     134    | 8     24    6      |
| 1238  128   138    | 6     14    5      | 7     24    9      |
*--------------------------------------------------------------*

(4=2) r3c5 - r5c5 = (2-7) r5c6 = (7-4) r6c6 = (4) r6c4 => - 4 r2c4; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: March 29, 2015

Postby Marty R. » Sun Mar 29, 2015 3:48 am

Thanks guys.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: March 29, 2015

Postby gurth » Sun Mar 29, 2015 5:57 am

CW:
Image
gurth
 
Posts: 358
Joined: 11 February 2006
Location: Cape Town, South Africa

Re: March 29, 2015

Postby daj95376 » Sun Mar 29, 2015 7:08 am

SteveG48 wrote:Or essentially the same thing, but I'm curious if folks would find this palatable:

(4=12)r1c67 - (1=24)r2c4,r3c5 - (24=189)r5c45,r6c4 - (189=7)r56c3 contradiction => -4 r1c2

You have two (overlapping) paths that lead to contradicting results. You could take the perspective that one of the 7s in [c3] must be false, and use this to work each path backwards to a common conclusion; r1c67=24 -> -4 r1c2. However, your two paths can also be merged as follows:

Code: Select all
 +--------------------------------------------------------------+
 |  7     14    6     |  5     3     124   |  24    9     8     |
 |  12    1249  19    |  14    8     6     |  5     3     7     |
 |  38    5     38    |  7     24    9     |  24    6     1     |
 |--------------------+--------------------+--------------------|
 |  18    189   2     |  1389  5     13    |  6     7     4     |
 |  4     6     179   |  19    12    127   |  3     8     5     |
 |  5     3     78    |  48    6     47    |  9     1     2     |
 |--------------------+--------------------+--------------------|
 |  6     7     4     |  2     9     8     |  1     5     3     |
 |  9     12    5     |  134   7     134   |  8     24    6     |
 |  1238  128   138   |  6     14    5     |  7     24    9     |
 +--------------------------------------------------------------+
 # 45 eliminations remain

 (4=1)r1c67 - (1=4)r2c4 - (4=8)r6c4 - (8=7)r6c3 -

 (7=2)r5c345 - (2=4)r3c5 - (4=1)r2c4 - (1=24)r1c67  =>  -4 r1c4

This can be shortened to:

Code: Select all
  (4=8)r6c4 - (8=7)r6c3 - (7=2)r5c345 - (2=4)r3c5  =>  -4 r2c4

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: March 29, 2015

Postby SteveG48 » Sun Mar 29, 2015 1:31 pm

daj95376 wrote:
SteveG48 wrote:Or essentially the same thing, but I'm curious if folks would find this palatable:

(4=12)r1c67 - (1=24)r2c4,r3c5 - (24=189)r5c45,r6c4 - (189=7)r56c3 contradiction => -4 r1c2

You have two (overlapping) paths that lead to contradicting results. You could take the perspective that one of the 7s in [c3] must be false, and use this to work each path backwards to a common conclusion; r1c67=24 -> -4 r1c2. However, your two paths can also be merged as follows:

Code: Select all
 +--------------------------------------------------------------+
 |  7     14    6     |  5     3     124   |  24    9     8     |
 |  12    1249  19    |  14    8     6     |  5     3     7     |
 |  38    5     38    |  7     24    9     |  24    6     1     |
 |--------------------+--------------------+--------------------|
 |  18    189   2     |  1389  5     13    |  6     7     4     |
 |  4     6     179   |  19    12    127   |  3     8     5     |
 |  5     3     78    |  48    6     47    |  9     1     2     |
 |--------------------+--------------------+--------------------|
 |  6     7     4     |  2     9     8     |  1     5     3     |
 |  9     12    5     |  134   7     134   |  8     24    6     |
 |  1238  128   138   |  6     14    5     |  7     24    9     |
 +--------------------------------------------------------------+
 # 45 eliminations remain

 (4=1)r1c67 - (1=4)r2c4 - (4=8)r6c4 - (8=7)r6c3 -

 (7=2)r5c345 - (2=4)r3c5 - (4=1)r2c4 - (1=24)r1c67  =>  -4 r1c4

This can be shortened to:

Code: Select all
  (4=8)r6c4 - (8=7)r6c3 - (7=2)r5c345 - (2=4)r3c5  =>  -4 r2c4

_


Thanks, Danny. Your last chain is clearly much better than mine, and I should have seen it. However, it still leaves the question. Would Sudoku purists find my second chain palatable? It uses proof by contradiction, which generally seems to be frowned on, but not in the common form of "let's assume the desired elimination is actually true and see where that goes". Here it's actually used to prove the strong link between 4s in r1c67, which is the more accepted way of getting an elimination.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: March 29, 2015

Postby daj95376 » Sun Mar 29, 2015 4:57 pm

SteveG48 wrote:Would Sudoku purists find my second chain palatable?

I don't know about the "purists", but I winced as I went through your solution. It took me a bit to realize that you had overlapped two contradicting paths. After that, it fell into place that you had a lasso. My first chain -- regrouped to represent the lasso:

Code: Select all
 (4=1)r1c67 - 1r2c4 =                                              *** sequence to the loop

 4r2c4 - (4=8)r6c4 - (8=7)r6c3 - (7=2)r5c345 - (2=4)r3c5 - 4r2c4   *** discontinuous loop of the lasso

 = 1r2c4 - (1=24)r1c67                                             *** sequence back from the loop


The sequences leading to/from the discontinuous loop are extraneous. In my second chain, I rewrote the discontinuous loop as a standard chain.

Everything resulted from my working with your solution.

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: March 29, 2015

Postby SteveG48 » Sun Mar 29, 2015 6:13 pm

Thanks, Danny. It looked strange even to me.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida


Return to Puzzles