- Code: Select all
*-----------*
|7.6|...|...|
|...|.8.|5..|
|...|7.9|..1|
|---+---+---|
|..2|.5.|.74|
|.6.|...|.8.|
|53.|.6.|9..|
|---+---+---|
|6..|2.8|...|
|9.5|.7.|...|
|...|..5|7.9|
*-----------*
Play/Print this puzzle online
*-----------*
|7.6|...|...|
|...|.8.|5..|
|...|7.9|..1|
|---+---+---|
|..2|.5.|.74|
|.6.|...|.8.|
|53.|.6.|9..|
|---+---+---|
|6..|2.8|...|
|9.5|.7.|...|
|...|..5|7.9|
*-----------*
7 14 6 | 5 3 24-1 | 24 9 8
12 1249 19 |a14 8 6 | 5 3 7
38 5 38 | 7 b24 9 | 24 6 1
------------------------+----------------------+---------------------
18 189 2 | 1389 5 d13 | 6 7 4
4 6 179 | 19 12 127 | 3 8 5
5 3 78 | 48 6 47 | 9 1 2
------------------------+----------------------+---------------------
6 7 4 | 2 9 8 | 1 5 3
9 12 5 | 134 7 d134 | 8 24 6
1238 128 138 | 6 c14 5 | 7 24 9
+---------------+-------------+---------+
| 7 14 6 | 5 3 124 | 24 9 8 |
| 12 1249 19 | 14 8 6 | 5 3 7 |
| 38 5 38 | 7 24 9 | 24 6 1 |
+---------------+-------------+---------+
| 18 189 2 | 1389 5 13 | 6 7 4 |
| 4 6 179 | 19 12 127 | 3 8 5 |
| 5 3 78 | 48 6 47 | 9 1 2 |
+---------------+-------------+---------+
| 6 7 4 | 2 9 8 | 1 5 3 |
| 9 12 5 | 134 7 134 | 8 24 6 |
| 1238 128 138 | 6 14 5 | 7 24 9 |
+---------------+-------------+---------+
*------------------------------------------------------------*
| 7 1-4 6 | 5 3 a124A |ag24A 9 8 |
| 12 1249 19 |b14B 8 6 | 5 3 7 |
| 38 5 38 | 7 e24B 9 | f24 6 1 |
*-------------------+-------------------+--------------------|
| 18 189 2 | 1389 5 13 | 6 7 4 |
| 4 6 d179D |d19C d12C 127 | 3 8 5 |
| 5 3 c78D |b48C 6 47 | 9 1 2 |
*-------------------+-------------------+--------------------|
| 6 7 4 | 2 9 8 | 1 5 3 |
| 9 12 5 | 134 7 134 | 8 24 6 |
| 1238 128 138 | 6 14 5 | 7 24 9 |
*------------------------------------------------------------*
*--------------------------------------------------------------*
| 7 d14 6 | 5 3 124 |e24 9 8 |
| 12 1249 19 | 14 8 6 | 5 3 7 |
| 38 5 38 | 7 2-4 9 |f24 6 1 |
|--------------------+--------------------+--------------------|
| 18 189 2 | 1389 5 13 | 6 7 4 |
| 4 6 179 | 19 12 127 | 3 8 5 |
| 5 3 78 | 48 6 47 | 9 1 2 |
|--------------------+--------------------+--------------------|
| 6 7 4 | 2 9 8 | 1 5 3 |
| 9 c12 5 |b134 7 b134 | 8 24 6 |
| 1238 128 138 | 6 a14 5 | 7 24 9 |
*--------------------------------------------------------------*
*--------------------------------------------------------------*
| 7 14 6 | 5 3 124 | 24 9 8 |
| 12 1249 19 | 1-4 8 6 | 5 3 7 |
| 38 5 38 | 7 a24 9 | 24 6 1 |
|--------------------+--------------------+--------------------|
| 18 189 2 | 1389 5 13 | 6 7 4 |
| 4 6 179 | 19 b12 c127 | 3 8 5 |
| 5 3 78 |e48 6 d47 | 9 1 2 |
|--------------------+--------------------+--------------------|
| 6 7 4 | 2 9 8 | 1 5 3 |
| 9 12 5 | 134 7 134 | 8 24 6 |
| 1238 128 138 | 6 14 5 | 7 24 9 |
*--------------------------------------------------------------*
SteveG48 wrote:Or essentially the same thing, but I'm curious if folks would find this palatable:
(4=12)r1c67 - (1=24)r2c4,r3c5 - (24=189)r5c45,r6c4 - (189=7)r56c3 contradiction => -4 r1c2
+--------------------------------------------------------------+
| 7 14 6 | 5 3 124 | 24 9 8 |
| 12 1249 19 | 14 8 6 | 5 3 7 |
| 38 5 38 | 7 24 9 | 24 6 1 |
|--------------------+--------------------+--------------------|
| 18 189 2 | 1389 5 13 | 6 7 4 |
| 4 6 179 | 19 12 127 | 3 8 5 |
| 5 3 78 | 48 6 47 | 9 1 2 |
|--------------------+--------------------+--------------------|
| 6 7 4 | 2 9 8 | 1 5 3 |
| 9 12 5 | 134 7 134 | 8 24 6 |
| 1238 128 138 | 6 14 5 | 7 24 9 |
+--------------------------------------------------------------+
# 45 eliminations remain
(4=1)r1c67 - (1=4)r2c4 - (4=8)r6c4 - (8=7)r6c3 -
(7=2)r5c345 - (2=4)r3c5 - (4=1)r2c4 - (1=24)r1c67 => -4 r1c4
(4=8)r6c4 - (8=7)r6c3 - (7=2)r5c345 - (2=4)r3c5 => -4 r2c4
daj95376 wrote:SteveG48 wrote:Or essentially the same thing, but I'm curious if folks would find this palatable:
(4=12)r1c67 - (1=24)r2c4,r3c5 - (24=189)r5c45,r6c4 - (189=7)r56c3 contradiction => -4 r1c2
You have two (overlapping) paths that lead to contradicting results. You could take the perspective that one of the 7s in [c3] must be false, and use this to work each path backwards to a common conclusion; r1c67=24 -> -4 r1c2. However, your two paths can also be merged as follows:
- Code: Select all
+--------------------------------------------------------------+
| 7 14 6 | 5 3 124 | 24 9 8 |
| 12 1249 19 | 14 8 6 | 5 3 7 |
| 38 5 38 | 7 24 9 | 24 6 1 |
|--------------------+--------------------+--------------------|
| 18 189 2 | 1389 5 13 | 6 7 4 |
| 4 6 179 | 19 12 127 | 3 8 5 |
| 5 3 78 | 48 6 47 | 9 1 2 |
|--------------------+--------------------+--------------------|
| 6 7 4 | 2 9 8 | 1 5 3 |
| 9 12 5 | 134 7 134 | 8 24 6 |
| 1238 128 138 | 6 14 5 | 7 24 9 |
+--------------------------------------------------------------+
# 45 eliminations remain
(4=1)r1c67 - (1=4)r2c4 - (4=8)r6c4 - (8=7)r6c3 -
(7=2)r5c345 - (2=4)r3c5 - (4=1)r2c4 - (1=24)r1c67 => -4 r1c4
This can be shortened to:
- Code: Select all
(4=8)r6c4 - (8=7)r6c3 - (7=2)r5c345 - (2=4)r3c5 => -4 r2c4
_
SteveG48 wrote:Would Sudoku purists find my second chain palatable?
(4=1)r1c67 - 1r2c4 = *** sequence to the loop
4r2c4 - (4=8)r6c4 - (8=7)r6c3 - (7=2)r5c345 - (2=4)r3c5 - 4r2c4 *** discontinuous loop of the lasso
= 1r2c4 - (1=24)r1c67 *** sequence back from the loop