March 27, 2014

Post puzzles for others to solve here.

March 27, 2014

Postby ArkieTech » Wed Mar 26, 2014 11:17 pm

Code: Select all
 *-----------*
 |1..|8.2|..3|
 |..2|.4.|7..|
 |.3.|.1.|.5.|
 |---+---+---|
 |5..|...|..1|
 |.17|...|39.|
 |3..|...|..4|
 |---+---+---|
 |.8.|.9.|.2.|
 |..5|.6.|4..|
 |9..|5.8|..7|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: March 27, 2014

Postby pjb » Wed Mar 26, 2014 11:39 pm

Code: Select all
 1     a57     6      | 8      7-5    2      | 9      4      3     
 8      59     2      | 39     4      359    | 7      1      6     
b47     3      49     | 679    1      679    | 28     5      28     
 ---------------------+----------------------+---------------------
 5      269    489    | 2479   3      479    | 28     67     1     
c24     1      7      | 246   e58     456    | 3      9     d28     
 3      269    89     | 1279   78     179    | 5      67     4     
 ---------------------+----------------------+---------------------
 6      8      3      | 47     9      47     | 1      2      5     
 27     27     5      | 13     6      13     | 4      8      9     
 9      4      1      | 5      2      8      | 6      3      7     


(5=7)r1c2 - (7=4)r3c1 - (4=2)r5c1 - (2=8)r5c9 - (8=5)r5c5 => -5 r1c5; stte

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: March 27, 2014

Postby Leren » Thu Mar 27, 2014 12:37 am

Code: Select all
*--------------------------------------------------------------*
| 1     57    6      | 8     57    2      | 9     4     3      |
| 8     59    2      | 39    4     359    | 7     1     6      |
| 47    3     49     | 679   1     679    | 28    5     28     |
|--------------------+--------------------+--------------------|
| 5     269  d89-4   | 2479  3     479    |c28    67    1      |
|a24    1     7      | 246   58    456    | 3     9    b28     |
| 3     269   89     | 1279  78    179    | 5     67    4      |
|--------------------+--------------------+--------------------|
| 6     8     3      | 47    9     47     | 1     2     5      |
| 27    27    5      | 13    6     13     | 4     8     9      |
| 9     4     1      | 5     2     8      | 6     3     7      |
*--------------------------------------------------------------*

H2 Wing: (4=2) r5c1 - r5c9 = (2-8) r4c7 = (8) r4c3 => - 4 r4c3; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: March 27, 2014

Postby SteveG48 » Thu Mar 27, 2014 12:52 am

Code: Select all
 *-----------------------------------------------------------*
 | 1    c57    6     |  8   d57    2     | 9     4     3     |
 | 8     59    2     |  39   4    e359   | 7     1     6     |
 |b47    3     49    |  679  1     679   | 28    5     28    |
 *-------------------+-------------------+-------------------|
 | 5     269   489   |  2479 3     479   | 28    67    1     |
 |a24    1     7     | f246  58   f456   | 3     9     8-2   |
 | 3     269   89    |  1279 78    179   | 5     67    4     |
 *-------------------+-------------------+-------------------|
 | 6     8     3     |  47   9     47    | 1     2     5     |
 | 27    27    5     |  13   6     13    | 4     8     9     |
 | 9     4     1     |  5    2     8     | 6     3     7     |
 *-----------------------------------------------------------*


OK, let me try Danny's notation for a networking solution, except this one starts with a strong link:

(2=4*)r5c1 - (4=7)r3c1 - (7=5)r1c2 - r1c5 = r2c6 - (*45=26)r5c46 => -2 r5c9 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: March 27, 2014

Postby ArkieTech » Thu Mar 27, 2014 11:11 am

Code: Select all
 *-----------------------------------------------------------*
 | 1     5-7   6     | 8    a57    2     | 9     4     3     |
 | 8     59    2     | 39    4     359   | 7     1     6     |
 |c47    3     49    | 679   1     679   | 28    5     28    |
 |-------------------+-------------------+-------------------|
 | 5     269   489   | 2479  3     479   | 28    67    1     |
 |b24    1     7     | 246  b58    456   | 3     9    b28    |
 | 3     269   89    | 129-7 78    19-7  | 5     67    4     |
 |-------------------+-------------------+-------------------|
 | 6     8     3     | 47    9     47    | 1     2     5     |
 | 27    27    5     | 13    6     13    | 4     8     9     |
 | 9     4     1     | 5     2     8     | 6     3     7     |
 *-----------------------------------------------------------*
(7=5)r1c5-(5=4)r5c159-(4=7)r3c1 => -7r1c2,r3c46; ste
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: March 27, 2014

Postby daj95376 » Thu Mar 27, 2014 11:15 am

SteveG48 wrote:
Code: Select all
 *-----------------------------------------------------------*
 | 1    c57    6     |  8   d57    2     | 9     4     3     |
 | 8     59    2     |  39   4    e359   | 7     1     6     |
 |b47    3     49    |  679  1     679   | 28    5     28    |
 *-------------------+-------------------+-------------------|
 | 5     269   489   |  2479 3     479   | 28    67    1     |
 |a24    1     7     | f246  58   f456   | 3     9     8-2   |
 | 3     269   89    |  1279 78    179   | 5     67    4     |
 *-------------------+-------------------+-------------------|
 | 6     8     3     |  47   9     47    | 1     2     5     |
 | 27    27    5     |  13   6     13    | 4     8     9     |
 | 9     4     1     |  5    2     8     | 6     3     7     |
 *-----------------------------------------------------------*


OK, let me try Danny's notation for a networking solution, except this one starts with a strong link:

(2=4*)r5c1 - (4=7)r3c1 - (7=5)r1c2 - r1c5 = r2c6 - (*45=26)r5c46 => -2 r5c9 ; stte

Steve, looks okay, but the network logic forces the user to pause and recall an earlier relationship on <4>. Not desirable ... unless necessary.

When I wrote my first solver, I inadvertantly included network logic in my chains() routine. I learned a lot about chains before writing my second solver. Now, let's consider turning your network expression into a chain.

What if you didn't remember that the <4> in r5c1 was set true and, thus, didn't remember that it forced <4> false in r5c46? You would then end up with <246> in cells r5c46 after "(5)r2c6 - (5)r5c6". However, you started off with <24> in r5c1 ... and can reuse it.

Code: Select all
(2=4)r5c1 - (4=7)r3c1 - (7=5)r1c2 - r1c5 = r2c6 - (5=246)r5c146 => -2 r5c9 ; stte

You now have a chain that's easier for everyone to follow!
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: March 27, 2014

Postby tlanglet » Thu Mar 27, 2014 12:36 pm

daj95376 wrote:
SteveG48 wrote:
Code: Select all
 *-----------------------------------------------------------*
 | 1    c57    6     |  8   d57    2     | 9     4     3     |
 | 8     59    2     |  39   4    e359   | 7     1     6     |
 |b47    3     49    |  679  1     679   | 28    5     28    |
 *-------------------+-------------------+-------------------|
 | 5     269   489   |  2479 3     479   | 28    67    1     |
 |a24    1     7     | f246  58   f456   | 3     9     8-2   |
 | 3     269   89    |  1279 78    179   | 5     67    4     |
 *-------------------+-------------------+-------------------|
 | 6     8     3     |  47   9     47    | 1     2     5     |
 | 27    27    5     |  13   6     13    | 4     8     9     |
 | 9     4     1     |  5    2     8     | 6     3     7     |
 *-----------------------------------------------------------*

OK, let me try Danny's notation for a networking solution, except this one starts with a strong link:

(2=4*)r5c1 - (4=7)r3c1 - (7=5)r1c2 - r1c5 = r2c6 - (*45=26)r5c46 => -2 r5c9 ; stte

Steve, looks okay, but the network logic forces the user to pause and recall an earlier relationship on <4>. Not desirable ... unless necessary.

When I wrote my first solver, I inadvertantly included network logic in my chains() routine. I learned a lot about chains before writing my second solver. Now, let's consider turning your network expression into a chain.

What if you didn't remember that the <4> in r5c1 was set true and, thus, didn't remember that it forced <4> false in r5c46? You would then end up with <246> in cells r5c46 after "(5)r2c6 - (5)r5c6". However, you started off with <24> in r5c1 ... and can reuse it.

Code: Select all
(2=4)r5c1 - (4=7)r3c1 - (7=5)r1c2 - r1c5 = r2c6 - (5=246)r5c146 => -2 r5c9 ; stte

You now have a chain that's easier for everyone to follow!

Another view of this logic is to reverse the order of the chain.........

ANT(246=5)r5c146-5r2c6=5r1c5-(5=7)r1c2-(7=4)r3c1-(4=2)r5c1 => r5c9<>2

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: March 27, 2014

Postby Sudtyro2 » Thu Mar 27, 2014 3:30 pm

tlanglet wrote:
Another view of this logic is to reverse the order of the chain.........

ANT(246=5)r5c146-5r2c6=5r1c5-(5=7)r1c2-(7=4)r3c1-(4=2)r5c1 => r5c9<>2

Ted


Code: Select all
 *-----------------------------------------------------------*
 | 1    c57    6     |  8   d57    2     | 9     4     3     |
 | 8     59    2     |  39   4     359   | 7     1     6     |
 |b47    3     49    |  679  1     679   | 28    5     28    |
 *-------------------+-------------------+-------------------|
 | 5     269   489   |  2479 3     479   | 28    67    1     |
 |a24    1     7     |  246 e58    456   | 3     9     8-2   |
 | 3     269   89    |  1279 78    179   | 5     67    4     |
 *-------------------+-------------------+-------------------|
 | 6     8     3     |  47   9     47    | 1     2     5     |
 | 27    27    5     |  13   6     13    | 4     8     9     |
 | 9     4     1     |  5    2     8     | 6     3     7     |
 *-----------------------------------------------------------*

Or maybe a simple XY-Chain...

(2=4)r5c1-(4=7)r3c1-(7)r1c2=(7-5)r1c5=(5-8)r5c5=(8)r5c9 => r5c9<>2
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: March 27, 2014

Postby Marty R. » Thu Mar 27, 2014 3:52 pm

Code: Select all
+------------+-------------+----------+
| 1  57  6   | 8    57 2   | 9  4  3  |
| 8  59  2   | 39   4  359 | 7  1  6  |
| 47 3   49  | 679  1  679 | 28 5  28 |
+------------+-------------+----------+
| 5  269 489 | 2479 3  479 | 28 67 1  |
| 24 1   7   | 246  58 456 | 3  9  28 |
| 3  269 89  | 1279 78 179 | 5  67 4  |
+------------+-------------+----------+
| 6  8   3   | 47   9  47  | 1  2  5  |
| 27 27  5   | 13   6  13  | 4  8  9  |
| 9  4   1   | 5    2  8   | 6  3  7  |
+------------+-------------+----------+

Play this puzzle online at the Daily Sudoku site

Potential DP 67-46-47, r357c46, using externals.

7r3c1=4r5c1-(4=7)r3c1=>r3c1=7
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: March 27, 2014

Postby daj95376 » Thu Mar 27, 2014 5:30 pm

Sudtyro2 wrote:Or maybe a simple XY-Chain...

(2=4)r5c1-(4=7)r3c1-(7)r1c2=(7-5)r1c5=(5-8)r5c5=(8)r5c9 => r5c9<>2

Sudtyro2: Your chain is correct, but it's not an XY-Chain. An XY-Chain is a sequence of bivalue cells containing a strong link within each cell and weak links between the cells. Example: Phil's post at the top of this thread.


Marty: Beautiful !


[Edit: Corrected personal reference. I thought SteveG48 had made the post.]
Last edited by daj95376 on Fri Mar 28, 2014 12:56 am, edited 1 time in total.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: March 27, 2014

Postby SteveG48 » Fri Mar 28, 2014 12:23 am

daj95376 wrote:What if you didn't remember that the <4> in r5c1 was set true and, thus, didn't remember that it forced <4> false in r5c46? You would then end up with <246> in cells r5c46 after "(5)r2c6 - (5)r5c6". However, you started off with <24> in r5c1 ... and can reuse it.

Code: Select all
(2=4)r5c1 - (4=7)r3c1 - (7=5)r1c2 - r1c5 = r2c6 - (5=246)r5c146 => -2 r5c9 ; stte

You now have a chain that's easier for everyone to follow!


Wow!!!! Danny, if I'd come up with that on my own (not likely), I'd have thought that it would never be accepted. Then I look at it again and I can't see why I thought that. It just works. So at this point, would it be considered a networked solution or not? Apparently not.

Ted, Steve, thanks for your thoughts as well. If I'm not careful, I'm going to learn something from this.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: March 27, 2014

Postby Sudtyro2 » Fri Mar 28, 2014 12:38 am

daj95376 wrote:
Sudtyro2 wrote:Or maybe a simple XY-Chain...
(2=4)r5c1-(4=7)r3c1-(7)r1c2=(7-5)r1c5=(5-8)r5c5=(8)r5c9 => r5c9<>2

Steve: Your chain is correct, but it's not an XY-Chain. An XY-Chain is a sequence of bivalue cells containing a strong link within each cell and weak links between the cells. Example: Phil's post at the top of this thread.


Thx, Danny, for the correction! Would it be safe just to call it an AIC? :)

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: March 27, 2014

Postby daj95376 » Fri Mar 28, 2014 1:01 am

Sudtyro2 wrote:Thx, Danny, for the correction! Would it be safe just to call it an AIC? :)

_

Yes, it's an AIC w/o any network extensions.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006


Return to Puzzles