## Making 17's from JPF's 19

Everything about Sudoku that doesn't fit in one of the other sections

### Making 17's from JPF's 19

Hi.

I thought I would start a new thread on this one.

The idea is to take this puzzle:
Code: Select all
` . . 1 | . . . | 2 . .  . . 3 | . 4 . | 5 . .  . . . | . 6 . | . . . -------+-------+-------  . . . | 4 3 1 | . . .  4 . . | . . . | . . 6  2 . . | . . . | . . 7 -------+-------+-------  . . . | 8 . 2 | . . .  . 6 . | . . . | . 4 .  . 7 . | . . . | . 1 . `

Made by JPF, suggested by Wapati, and turn it into 17's.

I will be posting the progress here, so you all can follow the procedure.

First step is to create more 19's. When going down in size, you will need quite a few 19's per 18 that is created.

I start by doing 1-off, 1-on on this 19, this produces:
Code: Select all
`..1...2....3.4.5......6.......431...4.......62.......7...8.2....6.....4..7.....1...1...2....3.4.5......6........31...4.......62.....4.7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...........62.......7.9.8.2....6.....4..7.....1.`

The repeating the 1-off, 1-on on this list again gives us:
Code: Select all
`..1...2....3.4.5......6.......431...4.......62.......7...8.2....6.....4..7.....1...1...2....3.4.5......6........31...4.......62.....4.7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...........62.......7.9.8.2....6.....4..7.....1..51...2....3.4.5......6........31...4.......62.....4.7...8.2....6........7.....1...1..82....3...5......6.......431...........625......7...8.2....6.....4..7.....1...1..92....3...5......6.......431...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......6........31...........625......7...8.2....6.....4..7.....15..1...2....3.4.5.6....6.......431............25......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431..........6.25......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...2.......6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...8.......6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...........6.5......7...8.2....6.....45.7.....1.......2....3.4.5......6.......431...........628......7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......451...........62.......7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......431......5....6........7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......431......9....6........7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......431..........86........7.9.8.2....6.....4..7.....1.`

and doing it for a third time gives us:
Code: Select all
`..1...2....3.4.5......6.......431...4.......62.......7...8.2....6.....4..7.....1...1...2....3.4.5......6........31...4.......62.....4.7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...........62.......7.9.8.2....6.....4..7.....1..51...2....3.4.5......6........31...4.......62.....4.7...8.2....6........7.....1...1..82....3...5......6.......431...........625......7...8.2....6.....4..7.....1...1..92....3...5......6.......431...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......6........31...........625......7...8.2....6.....4..7.....15..1...2....3.4.5.6....6.......431............25......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431..........6.25......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...2.......6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...8.......6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...........6.5......7...8.2....6.....45.7.....1.......2....3.4.5......6.......431...........628......7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......451...........62.......7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......431......5....6........7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......431......9....6........7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......431..........86........7.9.8.2....6.....4..7.....1..51...2......4.5......6........31...4.......62.....4.7...8.2...36........7.....1..51...2....3.4........6........31...4.......62.....4.7...8.2....6......8.7.....1..51...2....3.4.5......6........51...4.......62.....4.7...8.2....6........7.....1..51...2....3.4.5......6.........1...4.......62.....4.7...8.2....6........7...9.1...4..82....3...5......6.......431...........625......7...8.2....6.....4..7.....1...1..82....3...5......6.......431...8.......6.5......7...8.2....6.....4..7.....1...1..82....3...5......6.......431...........625......7...8.5....6.....4..7.....1...1..92....3...5......6......4.31...........625......7...8.2....6.....4..7.....1...1..92....3...5......6.......431...........625......7...8.2...6......4..7.....1...1..92....3...5...8..6.......431...........625......7...8.2....6........7.....1...14..2....3...5......6......4.31...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......7......4.31...........625......7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31..........6.25......7...8.2....6.....4..7.....1...1.5.2....3.4.5......6......4.31...........6.5......7...8.2....6.....4..7.....1...1..82....3.4.5......6......4.31...........6.5......7...8.2....6.....4..7.....1...1...2....3.4.5.8....6......4.31...........6.5......7...8.2....6.....4..7.....1...1...2....3.4.5..8...6......4.31...........6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6...8..4.31...........6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6.....84.31...........6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31.8.........6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31.......2...6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31........5..6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31..........86.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31...........6.5..8...7...8.2....6.....4..7.....1...1...2....3.4.5......6......4.31...........6.5......7...8.2....62....4..7.....1...1...2....3.4.5......6......4.31...........6.5......7...8.2....6.....48.7.....1...1...2....3.4.5......6......4.31...........6.5......7...8.2....6.....4..78....1...1...2....3.4.5......6......4.31...........6.5......7...8.2....6.....4..7.....18..1...2.8..3.4.5......6......4.31...........62.......7...8.2....6.....4..7.....1...1...2....3.4.5......7........31...........625......7...8.2....6.....4..7.....15..1...2....3.4.5......6........31...........625......7...8.2...6......4..7.....15..1...2....3.4.5......6........31...........625......7...8.2....6.....4.7......15..1...2....3.4.5......6........31...........625......7...8.2....6.....4..7.....35..15..2....3...5.6....6.......431............25......7...8.2....6.....4..7.....1...19..2....3...5.6....6.......431............25......7...8.2....6.....4..7.....1...1..52....3...5.6....6.......431............25......7...8.2....6.....4..7.....1...1...2....3..75.6....6.......431............25......7...8.2....6.....4..7.....1...1...2....3...5.6....6.......431............25......7...8.2....6.3...4..7.....1...1...2....3...5.6....6.......431............25......7...8.2....6..5..4..7.....1...1...2....3...5.6....6.......431............25......7...8.2....6.....4..7..5..1...1...2....3...5.6....6.......431............25......7...8.2....6.....4..7...4.1...1...2....3...5.6....6.......431............25......7...8.2....6.....4..7...5.1...1...2....3.4...6....6.......431............25......7...8.2.5..6.....4..7.....1...1...2....3.4.5.6............431............25..6...7...8.2....6.....4..7.....1...1...2....3.4.5.6....6.......4.1.9..........25......7...8.2....6.....4..7.....1...1...2....3.4.5.6....6.......439............25......7...8.2....6.....4..7.....1...1...2....3.4.5.6....6.......431...2.........5......7...8.2....6.....4..7.....1...1...2....3.4.5.6....6.......431............25.....7....8.2....6.....4..7.....1...1...2....3.4.5.6....6.......431............25......7...8.5....6.....4..7.....1...1...2....3.4.5.6....6.......431............25......7...8.2....6.....8..7.....1...1...2....3.4.5......6.......4.1......9...6.25......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......4.1........9.6.25......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...2......6..5......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431..........6.85......7...8.2....6.....4..7.....1...1...2.7..3.4.5......6.......431..........6.25..........8.2....6.....4..7.....1...1...2....3.4.5.7....6.......431..........6.25..........8.2....6.....4..7.....1...1...2....3.4.5......6.......431..........6.25......7...8.5....6.....4..7.....1...1...2.8..3.4.5......6.......431..........6.25......7...8.2....6........7.....1...1...2....3.4.5......6.......431..........6.25......7...8.2....6.....4.7......1...19..2....3...5......6.......431...2.......6.5......7...8.2....6.....4..7.....1...1...2....3...5......6.......431...2.......6.5......7...8.2....6..5..4..7.....1...1...28...3.4.5......6.......43....2.......6.5......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...2.....6...5......7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...2.......6.5......7...8.2..........4.67.....1...1...8....3.4.5......6.......431...8.......6.5......7...8.2....6.....4..7.....1...1...2....3...5......6.......431...8.......6.5......7...8.2....6.....4..7...9.1...1...2....3.4.5......6...8...431...8.......6........7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...8......96........7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431...8.......6........7.5.8.2....6.....4..7.....1...1...2....3.4.5......6.......431...8.......6.5......7...8.2.3..6.....4..7.........19..2....3...5......6.......431...........6.5......7...8.2....6.....45.7.....1.8.1...2....3.4.5......6.......43............6.5......7...8.2....6.....45.7.....1...1...2....3.4.5......6.......431....2......6........7...8.2....6.....45.7.....1...1...2....3.4.5......6.......431...........6..5.....7...8.2....6.....45.7.....1...1...2....3.4.5......6...8...431...........6.5......7...8.2....6.....45.7.........1...2....3.4.5......6.......431...........6.5......7...8.2....6.....45.7.....3.......2....1.4.5......6.......431...........628......7.9.8.2....6.....4..7.....1.......2....3.4........6.7.....431...........628......7.9.8.2....6.....4..7.....1.......2....3.4.5......6......5.31...........628......7.9.8.2....6.....4..7.....1.......2....3.4.5......6.......435...........628......7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......451...2.......6........7.9.8.2....6.....4..7.....1...1...2....3.4.9......6.......431......5....6........7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......431......5....6........7.5.8.2....6.....4..7.....1...1...2..2...4.5......6.......431..........86........7.9.8.2....6.....4..7.....1...1...2....2.4.5......6.......431..........86........7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......435..........86........7.9.8.2....6.....4..7.....1...1...2....3.4.5......6.......431...5......86........7...8.2....6.....4..7.....1...1...2....3.4.5......6.......431..........86........7.9.8......6.....4..7...2.1.`

107 19's, all closely related to the first one.

Now let's look for 18s!

Havard
Havard

Posts: 377
Joined: 25 December 2005

the search for 18's in the list of 107 19's gave us these to start off with:
(doing a 2-off, 1-on on the 19's to make 18's)
Code: Select all
`8.14..2....3...5......6......4..1...........6.5......7...8.2....6.....4..7.....1...19..2....3...5.6............431............25......7...8.2...76.....4........1...1...2....3...5.6....6........41.9..........25......7...8.2....6.....4..7.....1...1...2....3...5......6.......431...2.....8.6........7...8.2....6..5.....7.....1.`

To make the base for expanding the 18's a bit bigger I do a 2-off, 2-on search on these ones, with this result:

Code: Select all
`8.14..2....3...5......6......4..1...........6.5......7...8.2....6.....4..7.....1.8.94..2....3..........6......4..1...........6.5......7...8.2.3..6.....4..7.....1.8.14..2....3..........6......4..1...........6.5......7...8.2.1..6.....4..75......8.14..2....3...5......6......4............1.6.5......7...8.2....6.....4..7.3.....8.14..2....3...5......6......4............9.6.5......7...8.2....6.....4..7.3.....8.14..2....3...5......6......4..1...........6....5...7...8.2....6........7.....198.14..2....3...5......6......4..1...........6......9.75..8.2....6.....4..7.........19..2....3...5.6............431............25......7...8.2...76.....4........1...49..2....3...5.6............431............25......7...8.2...76.....4........1...19..2....3...5.6............431............25......7...8.5...76.....4........1...49..2....3...5.6............431............25......7...8.5...76.....4........1...1...2.....9..5.6............431............25......7...8.2...76.....4...3....1...1...2......7.5.63...........431............25......7...8.2...76.....4........1...1...2.......75.63...........431............25......7...8.2...76.....4........1...19..2....3.....5............431............25......7...8.2...76.....4........16..19..2.4..3.....6............431............25......7...8.2.5.76..............1...19..2....3...5..........6...431............25......7...85....76.....4........1...1...2....3...5.6....6........41.9..........25......7...8.2....6.....4..7.....1...1...2........5.6..3.6........41.9..........25......7...8.2....6.....4..7.....1...1...2........5.6....6........41.9..........25......7...8.2....63....4..7.....1...9...2........5.6..1.6........41.9..........25......7...8.2....6.....4..7.....1...1...2....3.....6....6.5......41.9..........25......7...8.2....6.....4..7.....1...1.....2......5.6..9.6........41.9..........25......7...8.2....6.....4..7.....1...1..42..........6....6.5......41.9..........25......7...8.2....6.....4..7.....1...1...2........5.69...6........41.9..........25......73....2....6.....4..7.....1...1...2.....3..5.6....6........41.9..........25......79..8......6.....4..7.....1...1...2........5.6....6.3......41.9..........25......7...8.2....6.5......7.....1...1...2........5.6....6........41.9.....5....25......7...8.2....64.......7.....1...1...2....9...5.6....6........41.9..........25......7...8.2....6.....4.7......1...1...2........5.6....69.......41.9..........25......7...8.2....6.....4...7....1...1...2....3...5.7....6........41.9..........25......6...8.2....6.....4..7.....1...1...2....3...5.6....7........41.9..........25......7...8.2..........4.67.....1...1...2....38..5.6....6.........1.9......4...25......7.....2....6.....4..7.....1...1...2....3...5.6....6........41.9..........25......7...8.2..........4.76.....1...1...2....3...5.6....6........41.9..........25......7...8.2....6.5.....7......1...1...2....3...5.6....6........41.9..........25......7...8.2....6.....3.7......1...1...2....3...5......6.......431...2.....8.6........7...8.2....6..5.....7.....1...1.......93...5......6.......431...2.....8.6........7...8.2...6...5.....7.....1...1...2..4.3...5......6......4.31.........8.6........7...8.2....6..5.....7.....1...1...2....3...5......6..4....4.1...2.......6........7...8.2....6..5.....79....1...1...2....3...5...4..6.......4.1...2.....8.6........7...8.2...6...5.....7.....1.`

And then I go on to do 1-off, 1-on on these list, again and again!

Code: Select all
`8.14..2....3...5......6......4..1...........6.5......7...8.2....6.....4..7.....1.8.94..2....3..........6......4..1...........6.5......7...8.2.3..6.....4..7.....1.8.94..2....3..........6......4..1...........6.5......7...8.2.3..6.....4.7......1.8.14..2....3..........6......4..1...........6.5......7...8.2.1..6.....4..75......9.14..2....3..........6......4..1...........6.5......7...8.2.1..6.....4..75......8.14..2....3..........6......4..1...........6.5......7...8.2.1..6....4...75......8.14..2....3...5......6......4............1.6.5......7...8.2....6.....4..7.3.....8.94..2....3...5......6......4............1.6.5......7...8.2....6.....4..7.3.....8.14..2....3...5......6......4..1...........6....5...7...8.2....6........7.....198.14..2....3...5......6......41.............6....5...7...8.2....6........7.....198.14..2....3...5......6......4..1...........6......9.75..8.2....6.....4..7.......8.1...2....3...5......6......4..1.......3...6......9.75..8.2....6.....4..7.......8.1...2....3...5......6......4..1...........6.....39.75..8.2....6.....4..7.......8.14..3....3...5......6......4..1...........6......9.75..8.2....6.....4..7.......8.14..2....3...5......6......4..8...........6......9.75..8.2....6.....4..7.......8.14..2....3...5......6......4..1..........76......9..5..8.2....6.....4..7.........19..2....3...5.6............431............25......7...8.2...76.....4........1...49..2....3...5.6............431............25......7...8.2...76.....4........1...19..2....3...5.6............431............25......7...8.5...76.....4........1...49..2....3...5.6............431............25......7...8.5...76.....4........1...1...2.....9..5.6............431............25......7...8.2...76.....4...3....1...1...2......7.5.63...........431............25......7...8.2...76.....4........1...1...2.......75.63...........431............25......7...8.2...76.....4........1...1...2......7.5.63...........431............25......7.....2...76.....4....8...1...1...2......7.5.63...........431............25......7...8.2....63....4........1...1...2......7.5.63...........431............25......7...8.2....67....4........1...1..62.......75.63...........431............25......7...8.2....6.....4........1...19..2....3.....5............431............25......7...8.2...76.....4........16..19..2....3.....5............431............25..8...7.....2...76.....4........16..19..2....3.....5............431............25......7...8.2....6.....4.7......16..19..2.4..3.....6............431............25......7...8.2.5.76..............1...19..2....3...5..........6...431............25......7...85....76.....4........1...1...2....3...5.6....6........41.9..........25......7...8.2....6.....4..7.....1...1...2........5.6..3.6........41.9..........25......7...8.2....6.....4..7.....1...1...2........5.6....6........41.9..........25......7...8.2....63....4..7.....1...1...2....3.....6....6.5......41.9..........25......7...8.2....6.....4..7.....1...9...2........5.6..1.6........41.9..........25......7...8.2....6.....4..7.....1...9...2........5.6..1.6........41.9..5.......2.......7...8.2....6.....4..7.....1...1..42..........6....6.5......41.9..........25......7...8.2....6.....4..7.....1...1.....2......5.6..9.6........41.9..........25......7...8.2....6.....4..7.....1...1.....2......5.6..9.6........41.9..........25......7...8.2....6.....4.....3..1...1..42..........6....6.5......4..9......1...25......7...8.2....6.....4..7.....1...1...2........5.69...6........41.9..........25......73....2....6.....4..7.....1...1...2.....3..5.6....6........41.9..........25......79..8......6.....4..7.....1...1.........3..5.6....6........41.9..........25......79..8...2..6.....4..7.....1...1...2........5.6....6.3......41.9..........25......7...8.2....6.5......7.....1...1...2........5.6....6........41.9.....5....25......7...8.2....64.......7.....1...1...2....9...5.6....6........41.9..........25......7...8.2....6.....4.7......1...1...2........5.6....69.......41.9..........25......7...8.2....6.....4...7....1...1...2....3...5.7....6........41.9..........25......6...8.2....6.....4..7.....1...1...2....3.....7....6.5......41.9..........25......6...8.2....6.....4..7.....1...1...2....3.....7....6........41.9..........25......6...8.25...6.....4..7.....1...1...2....3...5.6....7........41.9..........25......7...8.2..........4.67.....1...1...2........5.6.9..7........41.9..........25......7...8.2..........4.67.....1...1...2....3.....6....7.5......41.9..........25......7...8.2..........4.67.....1...1...2....3.....6....7........41.9..........25......7...8.25.........4.67.....1...1...2....3...5.6....7........41.9..........25......7...8.2..........3.67.....1...1...2....38..5.6....6.........1.9......4...25......7.....2....6.....4..7.....1...1...23....8..5.6....6.........1.9......4...25......7.....2....6.....4..7.....1...1...2.....8..576....6.........1.9......4...25......7.....2....6.....4..7.....1...1...2.....8..5.6..7.6.........1.9......4...25......7.....2....6.....4..7.....1...1...2....3...5.6....6........41.9..........25......7...8.2..........4.76.....1...1...2....3.....6....6.5......41.9..........25......7...8.2..........4.76.....1...1...2....3...5.6....6........41.9..........25......7...8.2..........3.76.....1...1...2....3...5.6....6........41.9..........25......7...8.2....6.5.....7......1...1...2....3...5.6....6........41.9..........25......7...8.2....6.....3.7......1...1...2....3...5......6.......431...2.....8.6........7...8.2....6..5.....7.....1...1.......93...5......6.......431...2.....8.6........7...8.2...6...5.....7.....1...1.......94...5......6.......431...2.....8.6........7...8.2...6...5.....7.....1...1.......93...5......6......9.31...2.....8.6........7...8.2...6...5.....7.....1...1.......93...5......6.......4.1...2.....896........7...8.2...6...5.....7.....1...1...2..4.3...5......6......4.31.........8.6........7...8.2....6..5.....7.....1...1...2..4.3...9......6......4.31.........8.6........7...8.2....6..5.....7.....1...1...2..4.3...5......6......4..1......5..8.6........7...8.2....6..5.....7.....1...1...2..4.3...5......6......4..1.........8.6.......57...8.2....6..5.....7.....1...1...2..4.3...5......6......4.31...........6......8.7...8.2....6..5.....7.....1...1.5.2..4.3...5......6......4.31.........8.6........7...8.2....6........7.....1...1...2..4.3...5......6......4.31.........8.6........7...8.2....6.5......7.....1...1...2....3...5......6..4....4.1...2.......6........7...8.2....6..5.....79....1...1...2....3...5......7..4....4.1...2.......6........7...8.2....6..5.....79....1...1...2....3...5......6..4....4.1...........62.......7...8.2....6..5.....79....1...1...2....3...5......6..4....4.1...2.......6........7.....28...6..5.....79....1...1...2....3...5...4..6.......4.1...2.....8.6........7...8.2...6...5.....7.....1...1...2....3...5...4..6.......4.1...2.....8.6........7...8.2...6.........74....1.`

until I reach a total of 3460 18 sudoku.

These are now being searched for a 17!

Havard
Last edited by Havard on Sun Jun 03, 2007 7:53 pm, edited 1 time in total.
Havard

Posts: 377
Joined: 25 December 2005

by doing a 2-off, 1-on on those 3460 18's, these 17's popped out:

Code: Select all
`2.1........3.........96......4..1...........6.5......7...8.2.1..6.....49.7.......5.19.......3..........6......4.....9......2.6........7...8.2.3..6.....4..7.5.....9.14.............5....6.8.....9.............6.5..3...7...1.2.9..6.....4..7.........18..2....3..........6......4..1........9..6......8.7.7...2...96..5...........1.9.1...3...............7......34.1...........6..8...5.7.....28...6.......47.9.......1..32............4..7......89.1...........6..4...5.7.....2.9..6..5.....7.......`

and out of these, this one is new:
Code: Select all
`5 . 1|9 . .|. . .. . 3|. . .|. . .. . .|. 6 .|. . .-----+-----+-----. . 4|. . .|. . 9. . .|. . .|2 . 6. . .|. . .|. . 7-----+-----+-----. . .|8 . 2|. 3 .. 6 .|. . .|. 4 .. 7 .|5 . .|. . .`

it has been added to the Gordon database with the ID# 40156.

So that's it. The whole process took a bit more than one hour on my pentium 4, 2.0 Ghz. A few minutes to generate the 18's, and around an hour for the 2-off 1-on search. 1 out of 6 being new is a very high ratio, and I was surprised that any new ones came out of this. Maybe this is a good search to expand further, (make a lot more of the same 18's, and do another search) but I just wanted to demonstrate the technique I have been using to find 17's lately.

Havard
Havard

Posts: 377
Joined: 25 December 2005

Thanks Havard and congratulations, again.
It's neat and your algorithm seems to be very efficient for finding new 17s.

My question is : what 19s (or whatever number of clues) are the best ones to start with ?
I don't think that symmetries, non diagonal boxes etc... in the starting puzzle are very usefull

JPF
JPF
2017 Supporter

Posts: 3754
Joined: 06 December 2005
Location: Paris, France

thanks.

I have no idea what 19's are suited for this search... Have only done this operation a few times...
Any ideas, theories on the matter would be appreciated!

Havard
Havard

Posts: 377
Joined: 25 December 2005

This is a very good idea Havard..........

I'm sure more will be on the way

tarek

tarek

Posts: 2644
Joined: 05 January 2006

Havard wrote:thanks.

I have no idea what 19's are suited for this search... Have only done this operation a few times...
Any ideas, theories on the matter would be appreciated!

Havard

Is there information on whether minimal 18s are more productive?

One would think that minimals might be most likely to generate new 17s, if one were me!
wapati
2010 Supporter

Posts: 527
Joined: 13 September 2006

I think Havard is generating minimal 18s....[a non minimal 18 is a 17 in disguise]........here is another one just published......

m_b_metcalf wrote:
Code: Select all
`+---+---+---+|123|...|...||...|456|...||...|...|...|+---+---+---+|...|...|417||...|...|...||865|...|...|+---+---+---+|...|...|...||...|198|...||...|...|526|+---+---+---+`

Go Havard !

C
coloin

Posts: 1695
Joined: 05 May 2005

Havard wrote:So that's it. The whole process took a bit more than one hour on my pentium 4, 2.0 Ghz. A few minutes to generate the 18's, and around an hour for the 2-off 1-on search. 1 out of 6 being new is a very high ratio, and I was surprised that any new ones came out of this. Maybe this is a good search to expand further, (make a lot more of the same 18's, and do another search) but I just wanted to demonstrate the technique I have been using to find 17's lately.

I'm trying to reproduce your sequence and am far more than 1hr
e.g., it takes ~27 min for me to get the first 4 18s @2Ghz
2-off on the 107 19s yields 16126 (possibly pseudo) puzzles (~1 sec)
1-on on those yields 4 18s but in that process 4372125 distinct possible 18s are checked
that took ~27min for a rate of ~2700(canonicalizations+solves)/sec/Ghz

I've got to be missing something simple in the 1-on code
how long did your (107 19s) => (4 18s) take?
can you describe any pruning/insights in that process?
thanks
gsf
2014 Supporter

Posts: 7306
Joined: 21 September 2005
Location: NJ USA

gsf wrote:I'm trying to reproduce your sequence and am far more than 1hr
e.g., it takes ~27 min for me to get the first 4 18s @2Ghz
2-off on the 107 19s yields 16126 (possibly pseudo) puzzles (~1 sec)
1-on on those yields 4 18s but in that process 4372125 distinct possible 18s are checked
that took ~27min for a rate of ~2700(canonicalizations+solves)/sec/Ghz

I've got to be missing something simple in the 1-on code
how long did your (107 19s) => (4 18s) take?
can you describe any pruning/insights in that process?
thanks

I have a process running at the moment, but when it is finished I will do a rerun with timing. (EDIT: it took 182 seconds.) 2 small things I can think of is that I make sure that the initial candidategrid of the 17-subgrid does not contain any illegal candidates before any backtracking starts, and a short and fast logical solver is used for pruning during the "trying all options"-stage.

Havard
Havard

Posts: 377
Joined: 25 December 2005

coloin wrote:I think Havard is generating minimal 18s....[a non minimal 18 is a 17 in disguise]........here is another one just published......

m_b_metcalf wrote:
Code: Select all
`+---+---+---+|123|...|...||...|456|...||...|...|...|+---+---+---+|...|...|417||...|...|...||865|...|...|+---+---+---+|...|...|...||...|198|...||...|...|526|+---+---+---+`

Go Havard !

C

I put this one, and this one from Mauricio:
Code: Select all
`1 . .|. . .|. . 2 . 3 .|4 . 5|. . . . . .|. . .|6 . . -----+-----+----- . . 5|. . .|7 . . . . .|3 . 8|. . . . . 6|. . .|2 . . -----+-----+----- . . 2|. . .|. . . . . .|9 . 1|. 3 . 7 . .|. . .|. . 4`

together, made 18000 18's out of them, and these 17's came out:
Code: Select all
`.........31.4.........9.6.2......7..4..3.......6...2.9..2.........8.1.3.7.................35.4...1.....9.6.2......7.....3.......6...2.9..2.........5.1.3.7................235.4..........86........7...4.3.......6...2.9..2.........5.1.3.7........1.......2.3...5..........6.........1...3.8.....9...2.7..27........9.1.3..4................13.4.........7.6.2......9.......3.....6...2.7..2.........5.1.3.74........1.....82.3.4.5.........6............8.3.......65..2....2.........9.1.3.5.........1........3.4.9.........6.2..........5...3.....6...2.7..2.7.........1.3..4....9.......86.293.4....................5.....3.......6...2.7..2.........9.1.3.74............86.23..4......9.............5.....3.......6...2.7..2.........9.1.3.74.............6.2.3.4......9.........5..8......3....1..6...2....2.........91..3.74........1...9....3.4...........6.2..........5...3.....6...2.7..2.7.........1.3..4....9...1........3.4.9.........8.2..........5...3.....6...2.7..2.7.........1.3..4....9..19.....5..3..65.......2................358.....6...2.7..2.........9...3.7...............62.314.....9................9...3.......6...2.7..2..7......9.1.3..5.......9.........3.4....8.....6..2............35......6...2.7..2..7......9...3..5......49.........3.4..........6..2......1.....35......6...2.7..2..7......9...3..5......49.........3.4........6...42...3.............9..6...2.7..2..7......9.1.3..5.......9.......2.384...............8.3.............9..6...2.7..2..7......9.1.3..5.......9.......2.3.4...6...........8.3.............9..6...2.7..2..7......9.1.3..5............86.239.4....................5.....3.......6...2.7..2.........9.1.3.74........1...9....3.4...........8.2..........5...3.....6...2.7..2.7.........1.3..4....9...1........3...9..........42........6.5...3.....6...2.7..2.7.........1.3.7.....9...1........3.4.9...........2........6.5...3.....6...2.7..2.7.........1.3..8....9..........2.3.4.5.......7.6.1..........9.3.4.....6.....7............9..83.7.2.............82.3.1.9...........6...5......9.3.8.....6...2.7..2.........9...3.7.........9........3...........2.68.............358.....6...2.7..2.6.......9...3.7......4.19.....8..3..6........2.9..............358.....6...2.7..2.........9...3.7...........8...62.3.1.....9................9...3.......6...2.7..2..7......9.1.3..5..........8...62.3.4.....9................9...35......6...2.7..2..7......9...3..5...............2.3.4...6.9................9.4.3.......6...2.7..2..7......9.1.3..5...............2.3.4...8.9................9.4.3.......6...2.7..2..7......9.1.3..5..............52.3.4.....9................9.8.3.......6...2.7..2..7......9.1.3..5...............2.3.4...6.9................9.8.3.......6...2.7..2..7......9.1.3..5...............2.3.4.8...9................9...38......6...2.7..2..7......91..3..5...............2.3.4...6.9................9...38......6...2.7..2..7......91..3..5.......9.........3.4..........6.82............35......6...2.7..2..7......9...3..5......49.........3.4....1.....6..2....5.......3.......6...2.7..2..7......9...3..5......4.9........3.4...........6.2............351.....6...2.7..2..7......9...3..5....4........8.253.4...........6..............3....9..5.8.2....2.........9.1.3.74.............8.293.4......1...................3.4.....6...2.7..2.7.......1...3..5....4........9.293.4......1...................3.4.....6...2.7..2.7.......1...3..5....4..1.........3.4...9....2..6........7..2..3.......6...2.8.72...........1.3.........4.........13.4.........8.6.2........7.4.3.......6...2.8..2.........9.1.3..7...........7....53.4...........6........7..9..3.......6...2.8..2.........9.1.3..7.....4.....5....13.............6.2......7.....3.4.....6...2.9..2.9.......5.1.3..7................13.............6.2..4..75.....3.......6...2.4..2.4.......9.1.3..7................53.4..........86.2......7.....3.......6...2.9..2.7.......5...3.1.......41.........3.4.........7.6........7..8..3.......6...2.9..2.........5.1.3..7......4.........53.4.........8.6.2......7.....3.......6...2.9..2..1......5...3..9......4.........53.4...........6.2....8.1.....3.......6...2.9..2..9......5...3..8......4.........53.4..........16.2......7.....3.......6...2.9..2.9.......5...3..8......4`

It should be easy to tell which 17 belong to which 18!

Out of these, these three were new:
Code: Select all
`. 1 .|. . .|. 8 2. 3 .|4 . 5|. . .. . .|. . .|6 . .-----+-----+-----. . .|. . .|. . .. 8 .|3 . .|. . .. . 6|5 . .|2 . .-----+-----+-----. . 2|. . .|. . .. . .|9 . 1|. 3 .5 . .|. . .|. . .`

Code: Select all
`. . .|. . .|6 . 2. 3 .|4 . .|. . .. 9 .|. . .|. . .-----+-----+-----. . 5|. . 8|. . .. . .|3 . .|. . 1. . 6|. . .|2 . .-----+-----+-----. . 2|. . .|. . .. . .|9 1 .|. 3 .7 4 .|. . .|. . .`

Code: Select all
`. . .|. . .|. 8 2. 3 .|1 . 9|. . .. . .|. . .|. . 6-----+-----+-----. . .|5 . .|. . .. 9 .|3 . 8|. . .. . 6|. . .|2 . 7-----+-----+-----. . 2|. . .|. . .. . .|9 . .|. 3 .7 . .|. . .|. . .`

I have entered the two last ones into the Gordon database (#ID 40573, 40574) but the first one I for some reason get a blank page when I try to enter it?

Havard
Havard

Posts: 377
Joined: 25 December 2005

### #40582 (submitted with zeroes)

Havard wrote:
I have entered the two last ones into the Gordon database
(#40573- 40574)

but the first one I for some reason get a blank page when I try to enter it?

hi Havard,
i've submitted it in your name:
#40582
Code: Select all
`.1.....82.3.4.5.........6............8.3.......65..2....2.........9.1.3.5........`

it had to be entered with zeroes --
Code: Select all
`010000082030405000000000600000000000080300000006500200002000000000901030500000000`

~ Pat

Pat

Posts: 3509
Joined: 18 July 2005

### Re: #40582 (submitted with zeroes)

Pat wrote:hi Havard,
i've submitted it in your name:
#40582
Code: Select all
`.1.....82.3.4.5.........6............8.3.......65..2....2.........9.1.3.5........`

it had to be entered with zeroes --
Code: Select all
`010000082030405000000000600000000000080300000006500200002000000000901030500000000`

~ Pat

thanks Pat! Funny that all the others would enter without the zeroes...

Havard
Havard

Posts: 377
Joined: 25 December 2005

Havard wrote:I have a process running at the moment, but when it is finished I will do a rerun with timing. (EDIT: it took 182 seconds.) 2 small things I can think of is that I make sure that the initial candidategrid of the 17-subgrid does not contain any illegal candidates before any backtracking starts, and a short and fast logical solver is used for pruning during the "trying all options"-stage.

I'm an order of magnitude off
can you post the #candidategrids before the illegal candidate check
(this would be the 2-off of the 107 19's -- I get 16126)
and the #puzzles presented to the logical solver
(this would be the 1-on of the 16126 -- I get 4372125)
thanks
gsf
2014 Supporter

Posts: 7306
Joined: 21 September 2005
Location: NJ USA

### Re: #40582 (submitted with zeroes)

Havard wrote:
thanks Pat! Funny that all the others would enter without the zeroes...

Havard

They don't have to be entered with zeros...

The problem is likely to related to some issues here with the computer on which the database is stored; hopefully these are now resolved..

Gordon
gfroyle

Posts: 214
Joined: 21 June 2005

Next