Magictour top1465 #2

Post puzzles for others to solve here.

Magictour top1465 #2

Postby denis_berthier » Fri Jan 07, 2022 5:41 am

.
Some 15 years ago, the top1465 collection used to contain the hardest known puzzles.
yzfswf asked me my solutions for #2 and #3 (2 puzzles among the hardest 3 in the collection, the only 3 that can't be solved by whips or braids).
I'll give them in a few days, so that other participants have a chance to propose their own solutions.

Here is #2

Code: Select all
     +-------+-------+-------+
     ! 7 . 8 ! . . . ! 3 . . !
     ! . . . ! 2 . 1 ! . . . !
     ! 5 . . ! . . . ! . . . !
     +-------+-------+-------+
     ! . 4 . ! . . . ! . 2 6 !
     ! 3 . . ! . 8 . ! . . . !
     ! . . . ! 1 . . ! . 9 . !
     +-------+-------+-------+
     ! . 9 . ! 6 . . ! . . 4 !
     ! . . . ! . 7 . ! 5 . . !
     ! . . . ! . . . ! . . . !
     +-------+-------+-------+
7.8...3.....2.1...5.........4.....263...8.......1...9..9.6....4....7.5...........
SER = 9.5
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Magictour top1465 #2

Postby DEFISE » Fri Jan 07, 2022 12:14 pm

I've found a solution in gW16 but also in S2-W8.
Here is a shorter solution in S2-W10:

Single(s): 3r6c9
Box/Line: 7r2b3 => -7r3c7 -7r3c8 -7r3c9
Box/Line: 8r2b3 => -8r3c7 -8r3c8 -8r3c9
Box/Line: 5b6r5 => -5r5c2 -5r5c3 -5r5c4 -5r5c6
Box/Line: 8b6c7 => -8r2c7 -8r7c7 -8r9c7
Hidden pairs: 78r3c46 => -3r3c4 -4r3c4 -9r3c4 -3r3c6 -4r3c6 -6r3c6 -9r3c6
Box/Line: 3b2c5 => -3r4c5 -3r7c5 -3r9c5

S2-whip[10]: r2n5{c5 HP:58c89}- r2n7{c8 c7}- b6n7{r5c7 r5c89}- c2n7{r5 HP:57r69}- c2n8{r6 r8}-
r7n8{c1 NP:12c15}- r7c7{n1 .} => -5r4c5

Single(s): 9r4c5, 9r5c3, 9r2c1
Box/Line: 9r3b3 => -9r1c9
Box/Line: 4c1b7 => -4r8c3 -4r9c3
Hidden pairs: 26r5c26 => -1r5c2 -7r5c2 -4r5c6 -7r5c6
Box/Line: 1r5b6 => -1r4c7
Hidden pairs: 57c2r69 => -2r6c2 -6r6c2 -8r6c2 -1r9c2 -2r9c2 -3r9c2 -6r9c2 -8r9c2
Single(s): 8r8c2
Box/Line: 1c2b1 => -1r3c3
Box/Line: 3c2b1 => -3r2c3 -3r3c3

whip[6]: r4c7{n7 n8}- r6c7{n8 n4}- r5c7{n4 n1}- r7c7{n1 n2}- r7c1{n2 n1}- r4c1{n1 .} => -7r2c7

Naked pairs: 46r2c37 => -6r2c2 -4r2c5 -6r2c5 -4r2c8 -6r2c8
Single(s): 3r2c2, 5r2c5, 3r3c5
Box/Line: 4b2r1 => -4r1c8
Box/Line: 6b2r1 => -6r1c2 -6r1c8
Naked pairs: 12r7c15 => -1r7c3 -2r7c3 -2r7c6 -1r7c7 -2r7c7 -1r7c8
Single(s): 7r7c7, 8r4c7, 1r4c1, 4r6c7, 6r2c7, 4r2c3, 1r5c7, 2r7c1, 1r7c5, 4r3c8, 4r5c4, 9r1c4, 3r8c4, 3r4c6, 8r6c1
Box/Line: 6c1b7 => -6r8c3 -6r9c3
Single(s): 1r8c3, 6r8c8, 4r8c1, 6r9c1

whip[2]: r4n5{c4 c3}- c2n5{r6 .} => -5r9c4
STTE
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: Magictour top1465 #2

Postby Cenoman » Fri Jan 07, 2022 4:46 pm

In three AIC steps:
Code: Select all
 +------------------------------+---------------------------+--------------------------+
 |  7       126       8         |  459     4569    4569     |  3       1456    1259    |
 |  469     36        3469      |  2      e34569   1        | c4679   d45678  d5789    |
 |  5       1236      123469    |  78      3469    78       |  12469   146     129     |
 +------------------------------+---------------------------+--------------------------+
 |  189     4         1579      |  3579   f59      3579     | b178     2       6       |
 |  3      h126-7    h1269-7    | g479     8      h2469-7   | b147    a1457   a157     |
 |  268     25678     2567      |  1       2456    24567    | b478     9       3       |
 +------------------------------+---------------------------+--------------------------+
 |  128     9         12357     |  6       125     2358     |  127     1378    4       |
 |  12468   12368     12346     |  3489    7       23489    |  5       1368    1289    |
 |  12468   1235678   1234567   |  34589   12459   234589   |  12679   13678   12789   |
 +------------------------------+---------------------------+--------------------------+

1. (7)r5c89 = r456c7 - r2c7 = (78-5)r2c89 = r2c5 - (5=9)r4c5 - r5c4 = (926)r5c236 =>-7r5c236; 1 placement & ls

Code: Select all
 +--------------------------+---------------------------+--------------------------+
 |  7      126    8         |  459     469-5   4569     |  3       1456    1259    |
 |  469    36     469       |  2      a34569   1        | c4679   b578-46 b578-9   |
 |  5      1236   12469     |  78      3469    78       |  12469   146     129     |
 +--------------------------+---------------------------+--------------------------+
 |  189    4      1579      |  3579    9-5     3579     |  18-7    2       6       |
 |  3      126    1269      |  479     8       2469     |  14-7    1457    157     |
 |  268    57     2567      |  1       246-5   24567    |  48-7    9       3       |
 +--------------------------+---------------------------+--------------------------+
 |  12     9     e357-12    |  6      f125    e358-2    | d127    e378-1   4       |
 |  1246   8      12346     |  349     7       2349     |  5       136     129     |
 |  1246   57     1234567   |  34589   1249-5  234589   |  1269-7  13678   12789   |
 +--------------------------+---------------------------+--------------------------+

2. (5)r2c5 = (58-7)r2c89 = r2c7 - r7c7 = (738-5)r7c368 = (5)r7c5 loop => -5 r1469c5, -46 r2c8, -9 r2c9, -7 r4569c7, -12 r7c368; 25 placements & ls
Note:
Hidden Text: Show
This step 2 can be presented also as Doubly Linked ALSs: (5=34697)r2c12357 - (7=125)r7c157 loop or as the equivalent MSLS: 8 cells r2c12357, r7c157; 8 links 3469r2, 12r7, 5c5, 7c7; same eliminations

Code: Select all
 +-------------------+------------------+-------------------+
 |  7    12    8     |  9    46   46    |  3    15    125   |
 |  9    3     4     |  2    5    1     |  6    78    78    |
 |  5    126   26    |  78   3    78    |  29   4     129   |
 +-------------------+------------------+-------------------+
 |  1    4    *57    | *57   9    3     |  8    2     6     |
 |  3    26    9     |  4    8    26    |  1    57    57    |
 |  8    57    26    |  1    26   57    |  4    9     3     |
 +-------------------+------------------+-------------------+
 |  2    9     3-5   |  6    1    58    |  7    38    4     |
 |  4    8     1     |  3    7    29    |  5    6     29    |
 |  6   *57   *357   | *58   24   249   |  29   138   18    |
 +-------------------+------------------+-------------------+

Finned X-W‌ing (5)r4c3 = r4c4 - r9c4 = r9c23 => -5 r7c3; ste
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: Magictour top1465 #2

Postby denis_berthier » Sun Jan 09, 2022 7:22 am

.
This puzzle, together with its twin brother #3, is one of the very rare cases when using Subsets in chains drastically simplifies the solution, as can be seen in solutions by Cenoman, Defise and shye.

For both puzzles:
- they are not in T&E(1) and can therefore not be solved by whips or braids
- they are in gT&E = T&E(1, W1) and can therefore be solved by g-braids
- they can indeed be solved by g-whips
- however, they require very long g-whips: 16
- they have a very large number of candidates after Singles and whips[1] have been applied.

One can find my g-whip solution for #2 (SER = 9.5) in the Magictour examples folder of CSP-Rules: https://github.com/denis-berthier/CSP-Rules-V2.1/tree/master/Examples/Sudoku/Magictour-top1465. I will not repeat it here.

Here is however another type of solution, using a technique described in chapter 12 of PBCS: w*-whips. I don't use it often, but it can be fun at times.

Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------------+-------------------------+-------------------------+
   ! 7       126     8       ! 459     4569    4569    ! 3       1456    1259    !
   ! 469     36      3469    ! 2       34569   1       ! 4679    45678   5789    !
   ! 5       1236    123469  ! 34789   3469    346789  ! 12469   146     129     !
   +-------------------------+-------------------------+-------------------------+
   ! 189     4       1579    ! 3579    359     3579    ! 178     2       6       !
   ! 3       1267    12679   ! 479     8       24679   ! 147     1457    157     !
   ! 268     25678   2567    ! 1       2456    24567   ! 478     9       3       !
   +-------------------------+-------------------------+-------------------------+
   ! 128     9       12357   ! 6       1235    2358    ! 127     1378    4       !
   ! 12468   12368   12346   ! 3489    7       23489   ! 5       1368    1289    !
   ! 12468   1235678 1234567 ! 34589   123459  234589  ! 12679   13678   12789   !
   +-------------------------+-------------------------+-------------------------+
263 candidates.


All the w*-whips below are either w*1-whips or w*2-whips, meaning that all the inner bi-whips have length at most 2.
In PBCS3, I've introduced a minor change of notation for w*-whips and similar patterns: the pseudo-length is now written between double square brackets, in order to recall that it can't be compared to my standard notion of length: the lengths of inner bi-whips are not counted.

Code: Select all
w*-whip[[1]]: r3n8{c6 .} ==> r3c4≠9
w*-whip[[1]]: r3n8{c4 .} ==> r3c6≠6
w*-whip[[1]]: r3n8{c4 .} ==> r3c6≠4
w*-whip[[1]]: r3n8{c4 .} ==> r3c6≠3
w*-whip[[1]]: r3n8{c4 .} ==> r3c6≠9
w*-whip[[1]]: r3n8{c6 .} ==> r3c4≠4
w*-whip[[1]]: r3n8{c6 .} ==> r3c4≠3
whip[1]: b2n3{r3c5 .} ==> r4c5≠3, r7c5≠3, r9c5≠3
w*-whip[[2]]: c5n2{r9 r7} - r8n2{c6 .} ==> r9c2≠2
w*-whip[[2]]: r5c2{n6 n7} - r2c7{n7 .} ==> r3c3≠3
w*-whip[[2]]: c5n9{r9 r1} - r2n5{c5 .} ==> r2c9≠9
w*-whip[[2]]: b4n9{r5c3 r4c1} - r2n5{c5 .} ==> r2c7≠9
w*-whip[[2]]: r4c5{n9 n5} - r2n7{c9 .} ==> r5c3≠7
w*-whip[[2]]: r5n9{c3 c4} - b5n4{r5c4 .} ==> r5c6≠7
w*-whip[[3]]: r5n9{c6 c4} - c5n5{r1 r4} - r2n7{c9 .} ==> r5c2≠7
w*-whip[[1]]: c2n7{r9 .} ==> r9c2≠1
w*-whip[[1]]: c2n7{r9 .} ==> r9c2≠3
w*-whip[[1]]: c2n7{r9 .} ==> r9c2≠6
w*-whip[[1]]: c2n7{r9 .} ==> r9c2≠8
w*-whip[[1]]: c2n7{r9 .} ==> r6c2≠8
hidden-single-in-a-column ==> r8c2=8
whip[1]: b7n3{r9c3 .} ==> r2c3≠3
w*-whip[[1]]: r7c1{n2 .} ==> r9c7≠1
w*-whip[[1]]: c2n7{r9 .} ==> r6c2≠6
w*-whip[[1]]: c2n7{r9 .} ==> r6c2≠2
w*-whip[[1]]: c5n1{r7 .} ==> r7c3≠2
w*-whip[[2]]: c7n2{r3 r7} - r7c5{n1 .} ==> r2c8≠6
w*-whip[[2]]: r7c7{n2 n7} - r2n5{c8 .} ==> r7c3≠1
w*-whip[[2]]: b8n1{r9c5 r7c5} - r2n7{c7 .} ==> r9c5≠5
w*-whip[[2]]: r2n5{c9 c5} - r7c5{n5 .} ==> r9c7≠7
w*-whip[[2]]: c7n6{r9 r2} - r2c5{n9 .} ==> r7c7≠1
w*-whip[[2]]: r4n1{c3 c1} - b9n2{r7c7 .} ==> r6c7≠7
w*-whip[[2]]: r7c5{n1 n5} - b3n7{r2c8 .} ==> r7c6≠2
w*-whip[[2]]: r3n1{c2 c7} - r8c9{n9 .} ==> r5c9≠1
w*-whip[[2]]: r7c7{n2 n7} - r2n5{c8 .} ==> r7c8≠1
w*-whip[[2]]: r2n7{c9 c7} - r7c7{n7 .} ==> r1c5≠5
w*-whip[[2]]: c7n2{r9 r7} - r2n5{c5 .} ==> r2c7≠4
w*-whip[[2]]: b9n2{r9c9 r7c7} - r2n5{c5 .} ==> r5c7≠7
w*-whip[[2]]: b9n2{r9c9 r7c7} - r2n5{c5 .} ==> r4c7≠7
whip[1]: b6n7{r5c9 .} ==> r5c4≠7
w*-whip[[1]]: r5n7{c9 .} ==> r5c8≠4
whip[1]: b6n4{r6c7 .} ==> r3c7≠4
w*-whip[[1]]: r5n7{c9 .} ==> r5c8≠1
whip[1]: b6n1{r5c7 .} ==> r3c7≠1
w*-whip[[2]]: b4n9{r4c1 r5c3} - b4n1{r4c3 .} ==> r7c5≠5
w*-whip[[1]]: r7n5{c6 .} ==> r6c6≠5
w*-whip[[1]]: r7n5{c6 .} ==> r7c8≠7
w*-whip[[1]]: r7n5{c6 .} ==> r7c3≠7
hidden-single-in-a-row ==> r7c7=7
naked-single ==> r2c7=6
naked-single ==> r2c2=3
hidden-single-in-a-block ==> r3c5=3
whip[1]: r3n6{c3 .} ==> r1c2≠6
w*-whip[[1]]: r3n6{c3 .} ==> r3c3≠4
hidden-single-in-a-row ==> r3c8=4
whip[1]: r1n4{c6 .} ==> r2c5≠4
w*-whip[[1]]: r2c5{n9 .} ==> r9c5≠9
w*-whip[[1]]: r2c5{n9 .} ==> r1c5≠9
w*-whip[[1]]: c5n9{r4 .} ==> r4c3≠9
w*-whip[[1]]: r4n9{c6 .} ==> r5c3≠1
w*-whip[[1]]: b4n9{r5c3 .} ==> r5c2≠1
hidden-single-in-a-row ==> r5c7=1
naked-single ==> r4c7=8
naked-single ==> r6c7=4
hidden-single-in-a-block ==> r6c1=8
whip[1]: c1n2{r9 .} ==> r8c3≠2, r9c3≠2
whip[1]: c1n6{r9 .} ==> r8c3≠6, r9c3≠6
whip[1]: c2n1{r3 .} ==> r3c3≠1
w*-whip[[1]]: c5n9{r4 .} ==> r4c4≠9
w*-whip[[1]]: c5n9{r4 .} ==> r4c6≠9
w*-whip[[1]]: r2c5{n9 .} ==> r4c3≠5
whip[1]: r4n5{c6 .} ==> r6c5≠5
w*-whip[[1]]: r2c5{n9 .} ==> r9c4≠9
w*-whip[[1]]: r3n6{c3 .} ==> r3c3≠9
whip[1]: r3n9{c9 .} ==> r1c9≠9
whip[1]: r1n9{c6 .} ==> r2c5≠9
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris


Return to Puzzles