Lowki 9.0 W7

Post puzzles for others to solve here.

Lowki 9.0 W7

Postby denis_berthier » Wed Mar 09, 2022 6:31 am

.
This puzzle has the same pattern of clues as Mith's "Loki" - the first ever puzzle found not to be in T&E(2).
Code: Select all
+-------+-------+-------+
! X X . ! . . . ! X . . !
! . . . ! . . . ! . . X !
! . X . ! . . . ! . . . !
+-------+-------+-------+
! . . X ! X X . ! . X . !
! . . . ! . . X ! X . X !
! . . X ! . X X ! X X . !
+-------+-------+-------+
! . . . ! . X . ! . . . !
! . X . ! X . X ! X . X !
! . . . ! X X . ! X . . !
+-------+-------+-------+
XX....X..........X.X.........XXX..X......XX.X..X.XXXX.....X.....X.X.XX.X...XX.X..
27 clues


It is really hard, with SER = 9.0 and W = 7, but much easier than "Loki". That's why I called it "Lowki".
The game can be as usual (finding a solution) or finding any exotic pattern.

Code: Select all
+-------+-------+-------+
! 9 1 . ! . . . ! 7 . . !
! . . . ! . . . ! . . 4 !
! . 7 . ! . . . ! . . . !
+-------+-------+-------+
! . . 4 ! 9 3 . ! . 7 . !
! . . . ! . . 6 ! 3 . 5 !
! . . 8 ! . 7 1 ! 4 2 . !
+-------+-------+-------+
! . . . ! . 9 . ! . . . !
! . 6 . ! 3 . 4 ! 8 . 2 !
! . . . ! 2 6 . ! 9 . . !
+-------+-------+-------+
91....7..........4.7.........493..7......63.5..8.7142.....9.....6.3.48.2...26.9.. #  1823 FNBXYK C26.m
SER = 9.0


Starting point:
Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 9      1      2356   ! 468    2458   2358   ! 7      3568   368    !
   ! 2358   2358   2356   ! 167    125    23579  ! 1256   13569  4      !
   ! 4      7      2356   ! 168    1258   23589  ! 1256   135689 13689  !
   +----------------------+----------------------+----------------------+
   ! 1256   25     4      ! 9      3      28     ! 16     7      168    !
   ! 12     29     7      ! 48     248    6      ! 3      189    5      !
   ! 36     39     8      ! 5      7      1      ! 4      2      69     !
   +----------------------+----------------------+----------------------+
   ! 2358   23458  1235   ! 178    9      578    ! 156    13456  1367   !
   ! 7      6      9      ! 3      15     4      ! 8      15     2      !
   ! 358    3458   135    ! 2      6      578    ! 9      1345   137    !
   +----------------------+----------------------+----------------------+
171 candidates


Simpler puzzles with the same pattern of clues forthcoming.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Lowki 9.0 W7

Postby P.O. » Wed Mar 09, 2022 6:51 pm

Code: Select all
after singles and intersections, five chains:

9       1       2356    468     2458    2358    7       3568    368             
2358    2358    2356    167     125     23579   1256    13569   4               
4       7       2356    168     1258    23589   1256    135689 e+1368×(9)           
1256    25      4       9       3      d2-8     16      7      d16+8             
12      29      7       48      248     6       3      e18+9    5               
36      39      8       5       7       1       4       2       6×(9)             
2358    23458   1235    178     9      c5(78)   156     13456   1367             
7       6       9       3      b1+5     4       8      a+1±5    2               
358     3458    135     2       6      c5(78)   9       1345    137

                                                        / c9n1{r4 r3} 
r8c8{n5 n1} - r8c5{n1 n5} - c6{r7r9}{n7n8} - r4n8{c6 c9}                c9 without 9 => r8c8 <> 1
                                                        \ r5c8{n1n8 n9}
singles: ( r8c5b8 n1  r8c8b9 n5 )
intersection: c6n5{r7r9} => r1c6 r2c6 r3c6 <> 5

 9        1        2356   468    2458   238    7      368    368             
d(38)×25 d(38)×25 e×235+6 167   a±2+5   2379 cb1+2-56 1369   4               
 4        7       f+2356  168    ×258   ×2389 b12+56  13689  13689           
 1256     25       4      9      3      28     16     7      168             
 12       29       7      48     248    6      3      189    5               
 36       39       8      5      7      1      4      2      69             
 2358     23458    1235   78     9      578    16     1346   1367           
 7        6        9      3      1      4      8      5      2               
 358      3458     135    2      6      578    9      134    137             

 9        1        2356   468    2458   238    7      368    368             
d(38)2×5 d(38)2×5 e23×5+6 167   a+2±5   2379 cb1-2+56 1369   4               
 4        7       f23+56  168    2×58   2389  b1+256  13689  13689           
 1256     25       4      9      3      28     16     7      168             
 12       29       7      48     248    6      3      189    5               
 36       39       8      5      7      1      4      2      69             
 2358     23458    1235   78     9      578    16     1346   1367           
 7        6        9      3      1      4      8      5      2               
 358      3458     135    2      6      578    9      134    137     

r2c5{n2 n5} - c7n5{r2 r3} - c7n2{r3 r2} - r2{c1c2}{n3n8} - r2c3{n2n3n5 n6} - r3c3{n3n5n6 n2} => r2c1 r2c2 r2c3 r3c5 r3c6 <> 2
r2c5{n5 n2} - c7n2{r2 r3} - c7n5{r3 r2} - r2{c1c2}{n3n8} - r2c3{n2n3n5 n6} - r3c3{n2n3n6 n5} => r2c1 r2c2 r2c3 r3c5  <> 5
single: ( r3c5b2 n8 )
intersections: c3n2{r1r3} => r7c3 <> 2
               c3n5{r1r3} => r7c3 r9c3 <> 5

9      1      2356   46     245   c2+3    7      368   a×36±8             
38     38     36     167    25     2379   1256   1369   4               
4      7      2356   16     8      39     1256   1369   1369           
1256   25     4      9      3     b+28    16     7     a16+8             
12     29     7      48     24     6      3      189    5               
36     39     8      5      7      1      4      2      69             
2358   23458  13     78     9      578    16     1346   1367           
7      6      9      3      1      4      8      5      2               
358    3458   13     2      6      578    9      134    137   

9      1      2356   46     245    23     7     a36+8  a3×6±8             
38     38     36     167    25     2379   1256  e13*69  4               
4      7      2356   16     8      39     1256  e13*69  1369           
1256   25     4      9      3      28     16     7      168             
12     29     7     b4+8    24     6      3     b1-89   5               
36     39     8      5      7      1      4      2      69             
2358   23458 d(13)  c+78    9      578   d(16)  e134-6  d(136)7           
7      6      9      3      1      4      8      5      2               
358    3458   13     2      6      578    9      134    137             

c9n8{r1 r4} - r4c6{n8 n2} - r1c6{n2 n3} => r1c9 <> 3
r1n8{c9 c8} - r5n8{c8 c4} - r7c4{n8 n7} - r7{c3c7c9}{n1n3n6} - c8n6{r7 r2r3} => r1c9 <> 6
ste.
P.O.
 
Posts: 1763
Joined: 07 June 2021

Re: Lowki 9.0 W7

Postby DEFISE » Thu Mar 10, 2022 1:01 pm

A solution with 2 chains :

Single(s): 5r6c4, 9r8c3, 7r8c1, 7r5c3, 4r3c1
Box/Line: 1c3b7 => -1r7c1 -1r9c1
Box/Line: 6c3b1 => -6r2c1
Box/Line: 8b1r2 => -8r2c4 -8r2c5 -8r2c6 -8r2c8

g-whip[6]: b8n1{r8c5 r7c4}- b8n8{r7c4 r79c6}- r4n8{c6 c9}- r5c8{n8 n9}- c9n9{r6 r3}- c9n1{r3 .} => -1r8c8
Single(s): 5r8c8, 1r8c5
Box/Line: 5c5b2 => -5r1c6 -5r2c6 -5r3c6
Naked pairs: 16c7r47 => -1r2c7 -6r2c7 -1r3c7 -6r3c7
Naked pairs: 25r2c57 => -2r2c1 -5r2c1 -2r2c2 -5r2c2 -2r2c3 -5r2c3 -2r2c6
Box/Line: 2b1c3 => -2r7c3
Box/Line: 5b1c3 => -5r7c3 -5r9c3
Naked pairs: 38r2c12 => -3r2c3 -3r2c6 -3r2c8
Single(s): 6r2c3
Box/Line: 3r2b1 => -3r1c3 -3r3c3
Box/Line: 3c3b7 => -3r7c1 -3r7c2 -3r9c1 -3r9c2
Naked pairs: 25r3c37 => -2r3c5 -5r3c5 -2r3c6
Single(s): 8r3c5

whip[8]: r4c6{n8 n2}- r1c6{n2 n3}- r1c9{n3 n6}- r6c9{n6 n9}- r5n9{c8 c2}- c2n2{r5 r7}- r7n4{c2 c8}- c8n6{r7 .} => -8r4c9
STTE
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: Lowki 9.0 W7

Postby denis_berthier » Fri Mar 11, 2022 6:58 am

.
As usual, the first thing I do is, find the rating.
In the present case, one has W=7 but gW=6.
As expected for a puzzle with this high SER, W or gW, the simplest-first resolution path is rather long:
Code: Select all
t-whip[4]: r4n8{c9 c6} - r5c4{n8 n4} - c5n4{r5 r1} - c5n8{r1 .} ==> r3c9≠8
whip[5]: r8n1{c5 c8} - c9n1{r9 r4} - b6n8{r4c9 r5c8} - c5n8{r5 r1} - b3n8{r1c8 .} ==> r3c5≠1
z-chain[4]: c5n1{r2 r8} - r8n5{c5 c8} - c7n5{r7 r3} - c7n2{r3 .} ==> r2c7≠1
z-chain[5]: r2n7{c4 c6} - r2n9{c6 c8} - r2n1{c8 c5} - b8n1{r8c5 r7c4} - c4n7{r7 .} ==> r2c4≠6
whip[5]: r8n5{c5 c8} - r8n1{c8 c5} - r2c5{n1 n2} - r1n2{c6 c3} - r1n5{c3 .} ==> r3c5≠5
t-whip[6]: r4c2{n5 n2} - r5n2{c2 c5} - r4c6{n2 n8} - b8n8{r9c6 r7c4} - b8n1{r7c4 r8c5} - r2c5{n1 .} ==> r2c2≠5
t-whip[6]: r4c6{n2 n8} - b8n8{r9c6 r7c4} - c4n7{r7 r2} - c4n1{r2 r3} - b3n1{r3c9 r2c8} - r2n9{c8 .} ==> r2c6≠2
g-whip[6]: b8n1{r8c5 r7c4} - b8n8{r7c4 r789c6} - r4n8{c6 c9} - r5c8{n8 n9} - c9n9{r6 r3} - c9n1{r3 .} ==> r8c8≠1
singles ==> r8c8=5, r8c5=1
whip[1]: b8n5{r9c6 .} ==> r1c6≠5, r2c6≠5, r3c6≠5
naked-pairs-in-a-column: c7{r4 r7}{n1 n6} ==> r3c7≠6, r3c7≠1, r2c7≠6
naked-pairs-in-a-row: r2{c5 c7}{n2 n5} ==> r2c3≠5, r2c3≠2, r2c2≠2, r2c1≠5, r2c1≠2
whip[1]: b1n2{r3c3 .} ==> r7c3≠2
whip[1]: b1n5{r3c3 .} ==> r7c3≠5, r9c3≠5
naked-pairs-in-a-block: b7{r7c3 r9c3}{n1 n3} ==> r9c2≠3, r9c1≠3, r7c2≠3, r7c1≠3
whip[1]: b7n3{r9c3 .} ==> r1c3≠3, r2c3≠3, r3c3≠3
naked-single ==> r2c3=6
whip[1]: b1n3{r2c2 .} ==> r2c6≠3, r2c8≠3
naked-pairs-in-a-row: r3{c3 c7}{n2 n5} ==> r3c6≠2, r3c5≠2
naked-single ==> r3c5=8
biv-chain[3]: r1c4{n6 n4} - r5c4{n4 n8} - c8n8{r5 r1} ==> r1c8≠6
biv-chain[3]: c8n6{r7 r3} - r3c4{n6 n1} - r2n1{c4 c8} ==> r7c8≠1
biv-chain[3]: r1c6{n3 n2} - r4c6{n2 n8} - c9n8{r4 r1} ==> r1c9≠3
biv-chain[3]: c8n6{r7 r3} - r1c9{n6 n8} - r1c8{n8 n3} ==> r7c8≠3
biv-chain[3]: r9c3{n1 n3} - r7n3{c3 c9} - b9n7{r7c9 r9c9} ==> r9c9≠1
biv-chain[3]: r6c9{n9 n6} - r1c9{n6 n8} - b6n8{r4c9 r5c8} ==> r5c8≠9
singles ==> r6c9=9, r6c2=3, r2c2=8, r2c1=3, r6c1=6, r5c2=9
biv-chain[3]: b3n9{r3c8 r2c8} - r2n1{c8 c4} - r3c4{n1 n6} ==> r3c8≠6
stte


So I started to look for shorter paths in gW8, using my version of François's fewer step algorithm. The best I found has 5 non-W1 steps:
1) g-whip[7]: r8c8{n5 n1} - b8n1{r8c5 r7c4} - b8n8{r7c4 r789c6} - r4n8{c6 c9} - r5c8{n8 n9} - c9n9{r6 r3} - c9n1{r3 .} ==> r8c5≠5
singles ==> r8c5=1, r8c8=5
whip[1]: b8n5{r9c6 .} ==> r1c6≠5, r2c6≠5, r3c6≠5
2) whip[8]: r2n9{c8 c6} - r2n7{c6 c4} - r7c4{n7 n8} - r5n8{c4 c5} - c5n4{r5 r1} - r1n5{c5 c3} - r1n2{c3 c6} - r4c6{n2 .} ==> r5c8≠9
singles ==> r6c9=9, r6c2=3, r6c1=6, r5c2=9
3) whip[8]: b6n8{r4c9 r5c8} - r5c4{n8 n4} - c5n4{r5 r1} - c5n8{r1 r3} - r1c4{n8 n6} - r3c4{n6 n1} - r3c9{n1 n3} - r1c8{n3 .} ==> r4c9≠6
singles ==> r4c7=6, r7c7=1, r9c3=1
4) naked-pairs-in-a-row: r2{c5 c7}{n2 n5} ==> r2c1≠5, r2c6≠2, r2c3≠5, r2c3≠2, r2c2≠5, r2c2≠2, r2c1≠2
singles ==> r2c2=8, r2c1=3, r2c3=6, r7c3=3
5) whip[6]: r2c8{n1 n9} - r3n9{c8 c6} - r2c6{n9 n7} - r9n7{c6 c9} - r9n3{c9 c8} - r3n3{c8 .} ==> r3c9≠1
stte

Notice the 1st step is the same as François's.
Indeed, in my version of the algorithm (which counts as steps all the active rules, including Subsets), the first 4 steps are the only possible ones - I mean the only ones with the highest score = the highness number of candidates eliminated.


Finally, using Forcing-T&E, a 1-step solution is available:
Code: Select all
FORCING[3]-T&E(W1) applied to trivalue candidates n1r5c8, n8r5c8 and n9r5c8 :
===> 5 values decided in the three cases: n5r8c8 n1r8c5 n6r2c3 n4r9c8 n4r7c2
===> 68 candidates eliminated in the three cases: n3r1c3 n6r1c3 n8r1c4 n2r1c5 n8r1c5 n8r1c6 n5r1c8 n6r1c8 n2r2c1 n5r2c1 n5r2c2 n2r2c3 n3r2c3 n5r2c3 n6r2c4 n1r2c5 n2r2c5 n2r2c6 n3r2c6 n5r2c6 n1r2c7 n6r2c7 n3r2c8 n5r2c8 n6r2c8 n3r3c3 n6r3c3 n8r3c4 n1r3c5 n5r3c5 n2r3c6 n5r3c6 n8r3c6 n1r3c7 n6r3c7 n1r3c8 n5r3c8 n8r3c8 n3r3c9 n8r3c9 n2r4c1 n6r4c9 n3r7c1 n8r7c1 n2r7c2 n3r7c2 n5r7c2 n8r7c2 n1r7c3 n1r7c4 n7r7c6 n5r7c7 n1r7c8 n4r7c8 n5r7c8 n1r7c9 n6r7c9 n5r8c5 n1r8c8 n3r9c1 n5r9c1 n3r9c2 n4r9c2 n5r9c3 n8r9c6 n1r9c8 n3r9c8 n5r9c8
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris


Return to Puzzles