List of First & Last of ~5.4 billiion essentially equiv diff

Post the puzzle or solving technique that's causing you trouble and someone will help

List of First & Last of ~5.4 billiion essentially equiv diff

Postby RichardGoodrich » Tue Jun 10, 2025 9:04 pm

This may already exist on Forum and I don't know it? I found the gsf code for generating that ~5.4 billion list of ED (essentially different) sudoku puzzles in minimal lexographic order. Is there a posting anywhere of the begin and end of this list., I would settle for now for the first and last 10. I played around with various text editors to see if it was practical to put this in one text file. Too big for one file in my experience. Maybe two? However for me splitting over about 100 files seemed more manageable. I know a few of you have done this, probably using Glen Fowler's code.

One question is can his code be stopped and started and perhaps restarted at arbitrary points? Could I for example generate and store the first 100 million or so of the sequence, the either let it run without generating output OR else restart the code toward the end and store the last 100 million or so?

Thoughts, Ideas? And would someone send me some of the first and last parts?
Big1952
RichardGoodrich
 
Posts: 79
Joined: 12 December 2012
Location: Josephine, TX

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby Leren » Tue Jun 10, 2025 9:53 pm

That number sounds like the number of Essentially Different solution grids, not puzzles.

Leren
Leren
 
Posts: 5184
Joined: 03 June 2012

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby champagne » Tue Jun 10, 2025 11:03 pm

you have in this post some comments on the DLL that I use daily to work with the solution grids

http://forum.enjoysudoku.com/virtual-catalog-dll-t45193.html
champagne
2017 Supporter
 
Posts: 7644
Joined: 02 August 2007
Location: France Brittany

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby RichardGoodrich » Wed Jun 11, 2025 3:18 pm

Thanks for responses. Yes, I meant ED grids not puzzles. I will check out the DLL thing. I believe 1to9only has a github repository with some Glen Fowler code as well. Thanks again!
Big1952
RichardGoodrich
 
Posts: 79
Joined: 12 December 2012
Location: Josephine, TX

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby StrmCkr » Fri Jun 13, 2025 6:01 pm

you could generate it with setting as a base set:

Code: Select all
123456789
45.......
.........
2.......
{ might be missing a number on this {6,7} in r2} id have to go dig and check. }

then set up the 46656 templates for a digit, then populate the 9 digit list of valid templates
then pick the lowest template count -> highest template count

and sequentially do digits 1 - 9

since you know the last position of each digit template selected you could add cycle functions to break it up over a couple days.

my code took about 14 days to run in full when i test ran it 10+ years ago... not great...
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1450
Joined: 05 September 2006

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby RichardGoodrich » Mon Jun 16, 2025 3:01 pm

StrmCkr wrote:you could generate it with setting as a base set:

Code: Select all
123456789
45.......
.........
2.......
{ might be missing a number on this {6,7} in r2} id have to go dig and check. }

then set up the 46656 templates for a digit, then populate the 9 digit list of valid templates
then pick the lowest template count -> highest template count

and sequentially do digits 1 - 9

since you know the last position of each digit template selected you could add cycle functions to break it up over a couple days.

my code took about 14 days to run in full when i test ran it 10+ years ago... not great...


Yep. I am just now digging into those older posts with gsf on the subject. I know 1to9only archived much of his code. When I can get my programmer hat back on, and brain to go with it, I will try that.

About those 416 bands... Are those bands just for the 1st band? I assume by bands we are not meaning chutes in general? Thx.
Big1952
RichardGoodrich
 
Posts: 79
Joined: 12 December 2012
Location: Josephine, TX

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby champagne » Mon Jun 16, 2025 4:18 pm

RichardGoodrich wrote:About those 416 bands... Are those bands just for the 1st band? I assume by bands we are not meaning chutes in general? Thx.


The 416 bands are the 416 ED min lexical possible first bands in a min lexical catalog.
If you want a code performing well, you feel better if you can quickly recognize the band ED number of any band or stack.
Note : in the minlex catalog, several of the last ED bands have no solution grid
champagne
2017 Supporter
 
Posts: 7644
Joined: 02 August 2007
Location: France Brittany

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby RichardGoodrich » Mon Jun 16, 2025 5:13 pm

champagne wrote:
RichardGoodrich wrote:About those 416 bands... Are those bands just for the 1st band? I assume by bands we are not meaning chutes in general? Thx.


The 416 bands are the 416 ED min lexical possible first bands in a min lexical catalog.
If you want a code performing well, you feel better if you can quickly recognize the band ED number of any band or stack.
Note : in the minlex catalog, several of the last ED bands have no solution grid


Thx for verifying that for me. I assume a list of those 416 exist somewhere? Could you point me to it, if so? I think gsf software could generate them, but do no have that working yet. Seems this would be a reasonable thing to have on OEIS site. Maybe it is there?
Big1952
RichardGoodrich
 
Posts: 79
Joined: 12 December 2012
Location: Josephine, TX

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby champagne » Mon Jun 16, 2025 6:53 pm

I don't understand exactly what you expect.

I gave you the link to the thread where my "virtual catalog" is widely explained.

You have in it the list of the 416 ED bands, but more, the list of all the "4 rows" that you can find in a minlex catalog.

gsf's work is very old. Meantime, " mladen dobritchev " worked hard on the ED bands .....
several threads in this forum are discussing the properties of these 416 ED bands.

And you have in my thread the easy call that you can do to get what is your first requirement, the list of the 10 first and 10 last solution grids of the catalog.

Difficult to help you without a clear view of your demand
champagne
2017 Supporter
 
Posts: 7644
Joined: 02 August 2007
Location: France Brittany

Re: List of First & Last of ~5.4 billiion essentially equiv

Postby coloin » Mon Jun 16, 2025 8:03 pm

maybe this thread will give you more information...
here ... gsfs software link is there ...

sudoku-64 -gb1 > band1.txt [gives the first band grids]
first 100
Hidden Text: Show
Code: Select all
123456789456789123789123456214365897365897214897214365531642978642978531978531642 #     0  S8.f
123456789456789123789123456214365897365897214897214365531642978648971532972538641 #     0  S8.f
123456789456789123789123456214365897365897214897214365531642978672938541948571632 #     0  S8.f
123456789456789123789123456214365897365897214897214365531642978678931542942578631 #     0  S8.f
123456789456789123789123456214365897365897214897214365531648972642971538978532641 #     0  S8.f
123456789456789123789123456214365897365897214897214365531648972648972531972531648 #     0  S8.f
123456789456789123789123456214365897365897214897214365531648972672931548948572631 #     0  S8.f
123456789456789123789123456214365897365897214897214365531648972678932541942571638 #     0  S8.f
123456789456789123789123456214365897365897214897214365531672948642938571978541632 #     0  S8.f
123456789456789123789123456214365897365897214897214365531672948648931572972548631 #     0  S8.f
123456789456789123789123456214365897365897214897214365531672948672948531948531672 #     0  S8.f
123456789456789123789123456214365897365897214897214365531672948678941532942538671 #     0  S8.f
123456789456789123789123456214365897365897214897214365531942678642578931978631542 #     0  S8.f
123456789456789123789123456214365897365897214897214365531942678648571932972638541 #     0  S8.f
123456789456789123789123456214365897365897214897214365531942678672538941948671532 #     0  S8.f
123456789456789123789123456214365897365897214897214365531942678678531942942678531 #     0  S8.f
123456789456789123789123456214365897365897214897214365532641978641978532978532641 #     0  S8.f
123456789456789123789123456214365897365897214897214365532641978671938542948572631 #     0  S8.f
123456789456789123789123456214365897365897214897214365532641978678932541941578632 #     0  S8.f
123456789456789123789123456214365897365897214897214365532648971648971532971532648 #     0  S8.f
123456789456789123789123456214365897365897214897214365532648971671932548948571632 #     0  S8.f
123456789456789123789123456214365897365897214897214365532648971678931542941572638 #     0  S8.f
123456789456789123789123456214365897365897214897214365532671948648932571971548632 #     0  S8.f
123456789456789123789123456214365897365897214897214365532671948671948532948532671 #     0  S8.f
123456789456789123789123456214365897365897214897214365532678941641932578978541632 #     0  S8.f
123456789456789123789123456214365897365897214897214365532678941648931572971542638 #     0  S8.f
123456789456789123789123456214365897365897214897214365532678941678941532941532678 #     0  S8.f
123456789456789123789123456214365897365897214897214365532941678641578932978632541 #     0  S8.f
123456789456789123789123456214365897365897214897214365532941678648572931971638542 #     0  S8.f
123456789456789123789123456214365897365897214897214365532941678678532941941678532 #     0  S8.f
123456789456789123789123456214365897365897214897214365532948671641572938978631542 #     0  S8.f
123456789456789123789123456214365897365897214897214365532948671648571932971632548 #     0  S8.f
123456789456789123789123456214365897365897214897214365532948671671532948948671532 #     0  S8.f
123456789456789123789123456214365897365897214897214365532971648648532971971648532 #     0  S8.f
123456789456789123789123456214365897365897214897214365532971648671548932948632571 #     0  S8.f
123456789456789123789123456214365897365897214897214365532971648678542931941638572 #     0  S8.f
123456789456789123789123456214365897365897214897214365532978641641532978978641532 #     0  S8.f
123456789456789123789123456214365897365897214897214365532978641678541932941632578 #     0  S8.f
123456789456789123789123456214365897365897214897214365538641972641972538972538641 #     0  S8.f
123456789456789123789123456214365897365897214897214365538641972672938541941572638 #     0  S8.f
123456789456789123789123456214365897365897214897214365538642971642971538971538642 #     0  S8.f
123456789456789123789123456214365897365897214897214365538642971671938542942571638 #     0  S8.f
123456789456789123789123456214365897365897214897214365538642971672931548941578632 #     0  S8.f
123456789456789123789123456214365897365897214897214365538671942642938571971542638 #     0  S8.f
123456789456789123789123456214365897365897214897214365538671942671942538942538671 #     0  S8.f
123456789456789123789123456214365897365897214897214365538672941641938572972541638 #     0  S8.f
123456789456789123789123456214365897365897214897214365538672941672941538941538672 #     0  S8.f
123456789456789123789123456214365897365897214897214365538941672641572938972638541 #     0  S8.f
123456789456789123789123456214365897365897214897214365538941672642578931971632548 #     0  S8.f
123456789456789123789123456214365897365897214897214365538941672672538941941672538 #     0  S8.f
123456789456789123789123456214365897365897214897214365538942671642571938971638542 #     0  S8.f
123456789456789123789123456214365897365897214897214365538942671671538942942671538 #     0  S8.f
123456789456789123789123456214365897365897214897214365538971642642538971971642538 #     0  S8.f
123456789456789123789123456214365897365897214897214365538971642671542938942638571 #     0  S8.f
123456789456789123789123456214365897365897214897214365538972641641538972972641538 #     0  S8.f
123456789456789123789123456214365897365897214897214365538972641672541938941638572 #     0  S8.f
123456789456789123789123456214365897365897214897214365541632978632978541978541632 #     0  S8.f
123456789456789123789123456214365897365897214897214365541638972638972541972541638 #     0  S8.f
123456789456789123789123456214365897365897214897214365541672938672938541938541672 #     0  S8.f
123456789456789123789123456214365897365897214897214365541932678678541932932678541 #     0  S8.f
123456789456789123789123456214365897365897214897214365542638971638971542971542638 #     0  S8.f
123456789456789123789123456214365897365897214897214365542671938671938542938542671 #     0  S8.f
123456789456789123789123456214365897365897214897214365542938671671542938938671542 #     0  S8.f
123456789456789123789123456214365897365897214897214365542971638638542971971638542 #     0  S8.f
123456789456789123789123456214365897365897214897214365548632971632971548971548632 #     0  S8.f
123456789456789123789123456214365897365897214897214365548671932671932548932548671 #     0  S8.f
123456789456789123789123456214365897365897214897214365548932671671548932932671548 #     0  S8.f
123456789456789123789123456214365897365897214897214365548971632632548971971632548 #     0  S8.f
123456789456789123789123456214365897365897214897214365571632948632948571948571632 #     0  S8.f
123456789456789123789123456214365897365897214897214365571638942638942571942571638 #     0  S8.f
123456789456789123789123456214365897365897214897214365571642938642938571938571642 #     0  S8.f
123456789456789123789123456214365897365897214897214365571932648648571932932648571 #     0  S8.f
123456789456789123789123456214365897365897214897214635531642978672938541948571362 #     0  S8.f
123456789456789123789123456214365897365897214897214635531642978678931542942578361 #     0  S8.f
123456789456789123789123456214365897365897214897214635531648972672931548948572361 #     0  S8.f
123456789456789123789123456214365897365897214897214635531648972678932541942571368 #     0  S8.f
123456789456789123789123456214365897365897214897214635531672948642938571978541362 #     0  S8.f
123456789456789123789123456214365897365897214897214635531672948648931572972548361 #     0  S8.f
123456789456789123789123456214365897365897214897214635531678942642931578978542361 #     0  S8.f
123456789456789123789123456214365897365897214897214635531678942648932571972541368 #     0  S8.f
123456789456789123789123456214365897365897214897214635532641978671938542948572361 #     0  S8.f
123456789456789123789123456214365897365897214897214635532641978678932541941578362 #     0  S8.f
123456789456789123789123456214365897365897214897214635532648971671932548948571362 #     0  S8.f
123456789456789123789123456214365897365897214897214635532648971678931542941572368 #     0  S8.f
123456789456789123789123456214365897365897214897214635532671948641938572978542361 #     0  S8.f
123456789456789123789123456214365897365897214897214635532671948648932571971548362 #     0  S8.f
123456789456789123789123456214365897365897214897214635532678941641932578978541362 #     0  S8.f
123456789456789123789123456214365897365897214897214635532678941648931572971542368 #     0  S8.f
123456789456789123789123456214365897365897214897214635538641972671932548942578361 #     0  S8.f
123456789456789123789123456214365897365897214897214635538641972672938541941572368 #     0  S8.f
123456789456789123789123456214365897365897214897214635538642971671938542942571368 #     0  S8.f
123456789456789123789123456214365897365897214897214635538642971672931548941578362 #     0  S8.f
123456789456789123789123456214365897365897214897214635538671942641932578972548361 #     0  S8.f
123456789456789123789123456214365897365897214897214635538671942642938571971542368 #     0  S8.f
123456789456789123789123456214365897365897214897214635538672941641938572972541368 #     0  S8.f
123456789456789123789123456214365897365897214897214635538672941642931578971548362 #     0  S8.f
123456789456789123789123456214365897365897214897214635541632978632978541978541362 #     0  S8.f
123456789456789123789123456214365897365897214897214635541632978638971542972548361 #     0  S8.f
123456789456789123789123456214365897365897214897214635541638972632971548978542361 #     0  S8.f
123456789456789123789123456214365897365897214897214635541638972638972541972541368 #     0  S8.f

sudoku-64 -gb416 > band416.txt [ gives the last band grid]

but this is copied from champagnes dll thread !
Hidden Text: Show
Code: Select all
 C0_ virtual file bands -v0-  -v1- print if -v2-
open 390 415 done
123456789457289631896317254231564897689173425745928163318645972572891346964732518 sol 5472730411 __
123456789457289631896317254231564897689173425745928163364792518572831946918645372 sol 5472730412 __
123456789457289631896317254231564897689173425745928163364891572518732946972645318 sol 5472730413 __
123456789457289631896317254231564897689173425745928163372645918518792346964831572 sol 5472730414 __
123456789457289631896317254231968475748523916965174328382641597574892163619735842 sol 5472730416 __
123456789457289631896317254238791546761534928945862173379128465514673892682945317 sol 5472730417 __
123456789457289631896317254241875396389642175765193428538764912612938547974521863 sol 5472730418 __
123456789457289631896317254241968375738524916965173428382641597574892163619735842 sol 5472730419 __
123456789457289631896317254248573916731968425965124378382641597574892163619735842 sol 5472730420 __
123456789457289631896317254249635817685741392731892465312978546578164923964523178 sol 5472730421 __
123456789457289631896317254261935847349872516578164923612593478785641392934728165 sol 5472730422 __
123456789457289631896317254261935847349872516578164923685741392712593468934628175 sol 5472730422 __
123456789457289631896317254264195378319872546578643912685721493742938165931564827 sol 5472730424 __
123456789457289631896317254264938175319572468785641392578164923642893517931725846 sol 5472730425 __
123456789457289631896317254264938517319572846785641923578164392642893175931725468 sol 5472730426 __
123456789457289631896317254271935846349862517568174923685741392712593468934628175 sol 5472730427 __
123456789457289631896317254274938165319562478685741392568174923742893516931625847 sol 5472730428 __
123456789457289631896317254274938516319562847685741923568174392742893165931625478 sol 5472730429 __
123456789457289631896317254285641973649735128731892546312978465568124397974563812 sol 5472730430 __
123456789457289631896731245231564897574928316689173524315642978748395162962817453 sol 5472730431 __
123456789457289631896731245231564897574928316689173524315897462748612953962345178 sol 5472730431 __
123456789457289631896731245231564897574928316689173524345612978718395462962847153 sol 5472730432 __
123456789457289631896731245231564897574928316689173524345897162718642953962315478 sol 5472730433 __
123456789457289631896731245231564897649178523785923164318697452564312978972845316 sol 5472730434 __
123456789457289631896731245231564897649178523785923164372895416564312978918647352 sol 5472730435 __
123456789457289631896731245231564897649178523785923164378695412564312978912847356 sol 5472730436 __
123456789457289631896731245231564897685973124749128563318697452564312978972845316 sol 5472730437 __
123456789457289631896731245231564897685973124749128563372895416564312978918647352 sol 5472730438 __
123456789457289631896731245231564897685973124749128563378695412564312978912847356 sol 5472730439 __
123456789457289631896731245231564897689173452745928163318692574562347918974815326 sol 5472730440 __
123456789457289631896731245231564897689173452745928163362815974574692318918347526 sol 5472730441 __
123456789457289631896731245231564897689173524745928163318697452564312978972845316 sol 5472730442 __
123456789457289631896731245231564897689173524745928163372895416564312978918647352 sol 5472730443 __
123456789457289631896731245231564897689173524745928163378695412564312978912847356 sol 5472730444 __
123456789457289631896731245231574896645928317789163524374895162518642973962317458 sol 5472730446 __
123456789457289631896731245231897564685143972749625318378512496564978123912364857 sol 5472730447 __
123456789457289631896731245231897564689145372745623918372514896564978123918362457 sol 5472730447 __
123456789457289631896731245234517968579648123681392457312874596745963812968125374 sol 5472730449 __
123456789457289631896731245235817964641392857789645312312578496564923178978164523 sol 5472730450 __
123456789457289631896731245235817964641392857789645312312578496568924173974163528 sol 5472730450 __
123456789457289631896731245235817964641392857789645312312578496574963128968124573 sol 5472730451 __
123456789457289631896731245235897164649312578781645392312964857564178923978523416 sol 5472730453 __
123456789457289631896731245235897164649312578781645392312968457568174923974523816 sol 5472730453 __
123456789457289631896731245235897164649312578781645392312974856574168923968523417 sol 5472730454 __
123456789457289631896731245239178564568924317741563928385647192612895473974312856 sol 5472730456 __
123456789457289631896731245239645817641897352785312964312578496568924173974163528 sol 5472730457 __
123456789457289631896731245241397568635812497789645312312974856564128973978563124 sol 5472730458 __
123456789457289631896731245241397568635812497789645312312974856574168923968523174 sol 5472730458 __
123456789457289631896731245241897563685312974739645812312568497564973128978124356 sol 5472730460 __
123456789457289631896731245241897563685312974739645812312578496574963128968124357 sol 5472730460 __
123456789457289631896731245241897563685312974739645812312968457578124396964573128 sol 5472730461 __
123456789457289631896731245245317896631892574789645312312968457564173928978524163 sol 5472730463 __
123456789457289631896731245245397168639812574781645392312968457568174923974523816 sol 5472730464 __
123456789457289631896731245245397168639812574781645392312974856574168923968523417 sol 5472730464 __
123456789457289631896731245245397816639812574781645392312968457564173928978524163 sol 5472730466 __
123456789457289631896731245245817396681392574739645812312968457564173928978524163 sol 5472730467 __
123456789457289631896731245249317568635892174781645392312968457568174923974523816 sol 5472730468 __
123456789457289631896731245249317568635892174781645392312974856574168923968523417 sol 5472730468 __
123456789457289631896731245249317568635892417781645392312974856574168923968523174 sol 5472730469 __
123456789457289631896731245285317964641892573739645812312968457578124396964573128 sol 5472730471 __
123456789457289631968137254245918376631574928789623415314862597576391842892745163 sol 5472730472 __
123456789457289631968137254295713468736894512841562397312975846584621973679348125 sol 5472730473 __
123456789457289631968731245231564897689317452745928163314875926596142378872693514 sol 5472730474 __
123456789457289631968731245231564897689317452745928163396142578514873926872695314 sol 5472730474 __
123456789457289631968731245231645897689317524745892316312564978574928163896173452 sol 5472730476 __
123456789457289631968731245231645897689317524745892316316978452574123968892564173 sol 5472730476 __
123456789457289631968731245231645897689317524745892316392564178574128963816973452 sol 5472730477 __
123456789457289631968731245231648597689517324745392816374125968592864173816973452 sol 5472730479 __
123456789457289631968731245231648597689517324745392816374925168512864973896173452 sol 5472730479 __
123456789457289631968731245234615897681397524795842316312564978579128463846973152 sol 5472730481 __
123456789457289631968731245234615897681397524795842316346978152579123468812564973 sol 5472730481 __
123456789457289631968731245234695817689317524715842396346178952571923468892564173 sol 5472730483 __
123456789457289631968731245239645817681397524745812396316978452574123968892564173 sol 5472730484 __
123456789457289631968731245239645817681397524745812396396178452574923168812564973 sol 5472730484 __
123456789457289631968731245239648517681597324745312896374125968592864173816973452 sol 5472730486 __
123456789457289631968731245241573896639812457785964123374625918596148372812397564 sol 5472730487 __
123456789457289631968731245281643597639517824745892316316978452592364178874125963 sol 5472730488 __
123456789457289631968731245284615397631897524795342816346978152579123468812564973 sol 5472730489 __
123456789457289631986137245231645897698713524745892316312564978574928163869371452 sol 5472730490 __
123456789457289631986137245231645897698713524745892316312574968564928173879361452 sol 5472730490 __
123456789457289631986137245231864597695371824748925316364592178512748963879613452 sol 5472730492 __
123456789457289631986137245231864597695371824748925316369718452512643978874592163 sol 5472730492 __
123456789457289631986137245231864597695371824748925316374592168512648973869713452 sol 5472730493 __
123456789457289631986137245231864597695371824748925316379618452512743968864592173 sol 5472730494 __
123456789457289631986137245231874596648925317795361824364592178512748963879613452 sol 5472730496 __
123456789457289631986137245231874596648925317795361824369718452512643978874592163 sol 5472730496 __
123456789457289631986137245231874596648925317795361824374592168512648973869713452 sol 5472730497 __
123456789457289631986137245231874596648925317795361824379618452512743968864592173 sol 5472730498 __
123456789457289631986137245248615973695743128731892456312978564579364812864521397 sol 5472730500 __
123456789457389612896127354231564978649718523785932146372645891568291437914873265 sol 5472730501 __
123456789457389612896127354231564978649718523785932146374291865562873491918645237 sol 5472730501 __
123456789457389612896127354231564978649718523785932146374891265568273491912645837 sol 5472730502 __
123456789457389612896127354231564978649718523785932146378645291562891437914273865 sol 5472730503 __
123456789457389612896127354231645978649871523785293146372564891568912437914738265 sol 5472730505 __
123456789457389612896127354231645978649871523785293146372914865564738291918562437 sol 5472730505 __
123456789457389612896127354231645978649871523785293146374568291562914837918732465 sol 5472730506 __
123456789457389612896127354231645978649871523785293146374912865562738491918564237 sol 5472730507 __
123456789457389612896127354231645978649871523785293146374918265568732491912564837 sol 5472730508 __
123456789457389612896127354231645978649871523785293146378564291562918437914732865 sol 5472730509 __
123456789457389612896172354285793146631524978749618523312945867568237491974861235 sol 5472730511 __
123456789457389612896271354281537946645928173739164528312645897568792431974813265 sol 5472730512 __
123456789457389612896271354285137946641928573739564128312645897568792431974813265 sol 5472730513 __
123456789457389612896271354285713946641892573739645128312564897568927431974138265 sol 5472730514 __
123456789457389612896271354289564173641937528735128946312645897568792431974813265 sol 5472730515 __
123456789457389612896721354231564978649178523785932146312645897568297431974813265 sol 5472730516 __
123456789457389612896721354231564978649178523785932146314297865562813497978645231 sol 5472730516 __
123456789457389612896721354231564978649178523785932146314897265568213497972645831 sol 5472730517 __
123456789457389612896721354231564978649178523785932146318645297562897431974213865 sol 5472730518 __
123456789457389612896721354231578946645932178789164523312645897568297431974813265 sol 5472730520 __
123456789457389612896721354231645978649817523785293146312564897568972431974138265 sol 5472730521 __
123456789457389612896721354231645978649817523785293146312974865564138297978562431 sol 5472730521 __
123456789457389612896721354231645978649817523785293146312978465568134297974562831 sol 5472730522 __
123456789457389612896721354231645978649817523785293146314568297562974831978132465 sol 5472730523 __
123456789457389612896721354231645978649817523785293146314972865562138497978564231 sol 5472730524 __
123456789457389612896721354231645978649817523785293146314978265568132497972564831 sol 5472730525 __
123456789457389612896721354231645978649817523785293146318564297562978431974132865 sol 5472730526 __
123456789457389612896721354231978546649532178785164923312645897568297431974813265 sol 5472730528 __
123456789457389612896721354234178965561932478789564123315297846642813597978645231 sol 5472730529 __
123456789457389612896721354234817965561293478789645123315972846642138597978564231 sol 5472730530 __
123456789457389612896721354235178946641932578789564123312645897568297431974813265 sol 5472730531 __
123456789457389612896721354235817946641293578789645123312564897568972431974138265 sol 5472730532 __
123456789457389612896721354235964178641578923789132546312645897568297431974813265 sol 5472730533 __
123456789457389612896721354239564178641978523785132946312645897568297431974813265 sol 5472730534 __
123456789457389621896217354268174593745938162931562847382641975574893216619725438 sol 5472730535 __
123456789457389621896217354268174593745938162931562847384725916579641238612893475 sol 5472730535 __
123456789457389621896217354268741593745893162931625847382164975574938216619572438 sol 5472730537 __
123456789457893612986217354274538196531964827698721435342685971715349268869172543 sol 5472730538 __
coloin
 
Posts: 2592
Joined: 05 May 2005
Location: Devon


Return to Help with puzzles and solving techniques