.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------+----------------+----------------+
! 1236 7 9 ! 268 5 4 ! 1368 36 36 !
! 36 4 5 ! 689 1 38 ! 3689 7 2 !
! 8 236 136 ! 269 23 7 ! 1369 4 5 !
+----------------+----------------+----------------+
! 9 1 8 ! 3 7 6 ! 5 2 4 !
! 25 25 7 ! 4 9 1 ! 36 36 8 !
! 4 36 36 ! 28 28 5 ! 7 1 9 !
+----------------+----------------+----------------+
! 356 356 2 ! 1 368 38 ! 4 9 7 !
! 136 8 136 ! 7 4 9 ! 2 5 36 !
! 7 9 4 ! 5 36 2 ! 36 8 1 !
+----------------+----------------+----------------+
80 candidates.
There's an elementary solution with Pairs and a bivalue-chain[3]:
naked-pairs-in-a-column: c7{r5 r9}{n3 n6} ==> r3c7≠6, r3c7≠3, r2c7≠6, r2c7≠3, r1c7≠6, r1c7≠3
whip[1]: b3n3{r1c9 .} ==> r1c1≠3
whip[1]: b3n6{r1c9 .} ==> r1c1≠6, r1c4≠6
naked-pairs-in-a-column: c4{r1 r6}{n2 n8} ==> r3c4≠2, r2c4≠8
finned-x-wing-in-columns: n3{c6 c1}{r2 r7} ==> r7c2≠3
biv-chain[3]: r2c1{n6 n3} - b2n3{r2c6 r3c5} - r3n2{c5 c2} ==> r3c2≠6
naked-pairs-in-a-row: r3{c2 c5}{n2 n3} ==> r3c3≠3
biv-chain[3]: c2n6{r7 r6} - c2n3{r6 r3} - r2c1{n3 n6} ==> r7c1≠6, r8c1≠6
stte
Real 1-step solutions (i.e. not hiding steps made of Pairs) require much longer and much more complex chains, either a z-chain[7] or a whip[6], which is absurdly complicated, considering the above solution:
z-chain[7]: c6n3{r2 r7} - c2n3{r7 r6} - c3n3{r6 r8} - c3n1{r8 r3} - r1n1{c1 c7} - c7n8{r1 r2} - r2c6{n8 .} ==> r3c5≠3, r2c1≠3
with z-candidates = n3r3c2 n3r3c3 n3r2c6
stte
z-chain[7]: r2c6{n3 n8} - r1n8{c4 c7} - c7n1{r1 r3} - c3n1{r3 r8} - b7n3{r8c3 r8c1} - r2n3{c1 c7} - r9n3{c7 .} ==> r7c6≠3
with z-candidates = n3r7c2 n3r7c1 n3r2c6 n3r9c5
stte
whip[6]: r1n2{c1 c4} - r3c5{n2 n3} - c6n3{r2 r7} - c2n3{r7 r6} - r6c3{n3 n6} - r3c3{n6 .} ==> r1c1≠1
stte
whip[6]: c1n1{r8 r1} - r1n2{c1 c4} - r3c5{n2 n3} - c6n3{r2 r7} - c2n3{r7 r6} - c3n3{r6 .} ==> r8c3≠1
stte