RSW wrote:- Code: Select all
+------------+-----------------+---------+
| 6 238 23 | 138 18 5 | 4 9 7 |
| 7 5 1 | 46 49 69 | 8 3 2 |
| 34 348 9 | 38 7 2 | 5 1 6 |
+------------+-----------------+---------+
| 1 6 5 | 9 2 3 | 7 4 8 |
| 34 34 7 | 568 58 68 | 1 2 9 |
| 2 9 8 | 147 14 y17 | 6 5 3 |
+------------+-----------------+---------+
| 8 12 24 | 1257 x159 xy179 | 3 6 145 |
| 5 123 234 | 128 6 xy1+8 | 9 7 14 |
| 9 7 6 |x15 3 4 | 2 8 15 |
+------------+-----------------+---------+
Two intersecting ALS's
x(15789)b8p2367: (8)r8c6==(7)r7c6; and y(1789)r678c6: (9)r7c6==(8)r8c6
(8)r8c6 == (7-9)r7c6 == (8)r8c6 => 8r8c6; stte
Tricky! It works here because there aren't other places for 8s and 7s at als x and
other places for 8s and 9s at als y. Still, a lot easier to find is:
(1=7)r6c6 - (7=591)b8p237 => -1 r8c6