- Code: Select all
+----------------+-------------------+--------------+
| 27-6 4 67 | 3 1268 16 | 5 9 18 |
| 5 8 3 | *14+7 9 17 | 2 14 6 |
| *26 1 9 | *24 268 5 | 7 34 38 |
+----------------+-------------------+--------------+
| 3 9 167 | 25 25 8 | 4 16 17 |
| *67 5 8 | *17 4 136-7 | 9 136 2 |
| 4 2 167 | 9 16 1367 | 8 5 137 |
+----------------+-------------------+--------------+
| 8 6 2 | 5-1 15 4 | 3 7 9 |
| 1 3 5 | 8 7 9 | 6 2 4 |
| 9 7 4 | 6 3 2 | 1 8 5 |
+----------------+-------------------+--------------+
The five marked cells(*) form an Almost
Disjoint Subset, the spoiler being (7)r2c4.
DS(12467)r35c1,r235c4 == (7)r2c4 - (7=1)r5c4 => -1 r7c4; stte
A little extra...
The spoiler can also see the (non-stte) DS eliminations of 6r1c1 and 7r5c6:
(7)r2c4 - (7=16)r21c6 => -6 r1c1.
(7)r2c4 - (7=16)r21c6 - (6=7)r1c3 - r46c3 = (7)r5c1 => -7 r5c6.
But, I don't think the spoiler can see (2)r3c5, since that is a true puzzle solution digit.
SteveC