.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------+----------------+----------------+
! 8 6 4 ! 15 2 15 ! 3 7 9 !
! 5 3 9 ! 7 6 8 ! 24 14 124 !
! 2 7 1 ! 3 9 4 ! 568 58 56 !
+----------------+----------------+----------------+
! 6 19 5 ! 8 14 2 ! 49 3 7 !
! 7 89 2 ! 6 45 3 ! 1 4589 45 !
! 4 18 3 ! 9 7 15 ! 258 6 25 !
+----------------+----------------+----------------+
! 13 4 68 ! 2 158 7 ! 569 159 1356 !
! 13 5 68 ! 4 18 9 ! 7 2 136 !
! 9 2 7 ! 15 3 6 ! 45 145 8 !
+----------------+----------------+----------------+
1) Simplest-first solution, using only bivalue-chains[3]:- Code: Select all
naked-pairs-in-a-row: r5{c5 c9}{n4 n5} ==> r5c8 ≠ 5, r5c8 ≠ 4
biv-chain[3]: r9c7{n5 n4} - r4c7{n4 n9} - b9n9{r7c7 r7c8} ==> r7c8 ≠ 5
biv-chain[3]: c8n5{r3 r9} - b8n5{r9c4 r7c5} - r5n5{c5 c9} ==> r3c9 ≠ 5
stte
2) Single-step solutions (with no uncounted pairs):There are 22 W1-anti-backdoors: n5r1c4 n1r1c6 n1r2c8 n4r2c9 n6r3c7 n8r3c8 n5r3c9 n9r4c2 n1r4c5 n4r4c7 n8r5c2 n4r5c5 n9r5c8 n5r5c9 n1r6c2 n5r6c6 n8r6c7 n5r7c5 n9r7c7 n1r9c4 n5r9c7 n4r9c8
all of which give rise to a 1-step solution with whips[≤7].
Here are the simplest two, using only bivalue-chains[4]:
- Code: Select all
biv-chain[4]: r5c9{n4 n5} - r3c9{n5 n6} - c7n6{r3 r7} - c7n9{r7 r4} ==> r4c7 ≠ 4
stte
- Code: Select all
biv-chain[4]: r4c7{n9 n4} - r5c9{n4 n5} - r3c9{n5 n6} - c7n6{r3 r7} ==> r7c7 ≠ 9
stte
Keeping with length 4, there's also a 1-stepper with a whip[4]:
- Code: Select all
whip[4]: r4c7{n9 n4} - r9c7{n4 n5} - c8n5{r9 r3} - c8n8{r3 .} ==> r5c8 ≠ 9
stte
Slightly longer reversible chains also lead to 1-steppers:
- Code: Select all
biv-chain[5]: r3c8{n5 n8} - r5n8{c8 c2} - b4n9{r5c2 r4c2} - r4c7{n9 n4} - r5c9{n4 n5} ==> r3c9 ≠ 5, r5c8 ≠ 5
stte
- Code: Select all
biv-chain[5]: r5c9{n4 n5} - r3c9{n5 n6} - c7n6{r3 r7} - c7n9{r7 r4} - r4n4{c7 c5} ==> r5c5 ≠ 4, r4c7 ≠ 4
stte
- Code: Select all
biv-chain[5]: r3c9{n5 n6} - c7n6{r3 r7} - c7n9{r7 r4} - r4n4{c7 c5} - r5c5{n4 n5} ==> r5c9 ≠ 5
stte
- Code: Select all
z-chain[5]: c7n9{r4 r7} - c7n6{r7 r3} - r3c9{n6 n5} - r5c9{n5 n4} - r4c7{n4 .} ==> r4c2 ≠ 9
stte