.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 234 5 234 ! 12378 13678 268 ! 9 68 478 !
! 9 6 1 ! 78 4 5 ! 2 3 78 !
! 7 8 234 ! 9 36 26 ! 56 1 45 !
+-------------------+-------------------+-------------------+
! 58 1 7 ! 4 568 268 ! 35 9 235 !
! 358 2 38 ! 158 158 9 ! 7 4 6 !
! 6 4 9 ! 257 57 3 ! 8 25 1 !
+-------------------+-------------------+-------------------+
! 248 9 2468 ! 358 358 7 ! 1 2568 2358 !
! 28 3 5 ! 6 9 1 ! 4 7 28 !
! 1 7 68 ! 358 2 4 ! 356 568 9 !
+-------------------+-------------------+-------------------+
There are 21 W1-anti-backdoors: n2r1c4 n8r1c6 n6r1c8 n7r1c9 n7r2c4 n8r2c9 n2r3c3 n6r3c6 n5r3c7 n4r3c9 n8r4c1 n2r4c6 n3r5c1 n5r5c1 n8r5c3 n2r6c8 n6r7c8 n8r8c1 n2r8c9 n6r9c3 n6r9c7
all of which give rise to a 1-step solution.
As seems to be usual with this kind of puzzles (SER around 7),
the number of anti-backdoors and the proportion of them giving rise to a 1-step solution are impressive.Leren, considering the above, apart from the SER, do you use any particular filter to choose the puzzles you propose here?
Here is the simplest (it is the same chain as RSW, found by SudoRules in reverse order):
- Code: Select all
biv-chain[3]: r8n8{c1 c9} - r2n8{c9 c4} - c6n8{r1 r4} ==> r4c1 ≠ 8
stte
Here are the other 1-step solutions using only bivalue-chains
biv-chain[4]: r1c8{n8 n6} - r7n6{c8 c3} - r9c3{n6 n8} - r8n8{c1 c9} ==> r2c9 ≠ 8, r1c9 ≠ 8, r7c8 ≠ 8, r9c8 ≠ 8
stte
OR:
biv-chain[4]: r1c8{n6 n8} - c6n8{r1 r4} - b5n2{r4c6 r6c4} - c8n2{r6 r7} ==> r7c8 ≠ 6
stte
OR:
biv-chain[4]: r1c8{n8 n6} - r7n6{c8 c3} - r9c3{n6 n8} - r8n8{c1 c9} ==> r2c9 ≠ 8, r1c9 ≠ 8, r7c8 ≠ 8, r9c8 ≠ 8
stte
OR:
biv-chain[5]: r1c8{n8 n6} - r7n6{c8 c3} - r9c3{n6 n8} - r8n8{c1 c9} - r2n8{c9 c4} ==> r1c6 ≠ 8, r2c9 ≠ 8
stte