.
- Code: Select all
 Resolution state after Singles and whips[1]:
   +----------------+----------------+----------------+ 
   ! 56   345  8    ! 36   1    7    ! 245  9    25   ! 
   ! 7    9    2    ! 4    8    5    ! 3    6    1    ! 
   ! 1    345  346  ! 36   9    2    ! 457  8    57   ! 
   +----------------+----------------+----------------+ 
   ! 3    1    5    ! 7    2    6    ! 9    4    8    ! 
   ! 26   27   9    ! 8    4    1    ! 57   35   3567 ! 
   ! 4    8    67   ! 5    3    9    ! 1    2    67   ! 
   +----------------+----------------+----------------+ 
   ! 9    6    1    ! 2    5    3    ! 8    7    4    ! 
   ! 8    357  37   ! 9    6    4    ! 25   1    235  ! 
   ! 25   2345 34   ! 1    7    8    ! 6    35   9    ! 
   +----------------+----------------+----------------+ 
1) simplest-first solution:- Code: Select all
 biv-chain[3]: r8c3{n3 n7} - b4n7{r6c3 r5c2} - c2n2{r5 r9} ==> r9c2 ≠ 3
biv-chain[3]: r9c1{n5 n2} - b4n2{r5c1 r5c2} - c2n7{r5 r8} ==> r8c2 ≠ 5
stte
2) 1-step solutions:There are 18 W1 anti-backdoors: n6r1c1 n3r1c4 n6r3c4 n7r3c7 n5r3c9 n2r5c1 n7r5c2 n5r5c7 n3r5c8 n6r5c9 n6r6c3 n7r6c9 n5r8c2 n7r8c3 n3r8c9 n5r9c1 n2r9c2 n5r9c8
all of which give rise to a 1-step solution.
Here is the simplest (and only one using only a bivalue-chain[3]):
- Code: Select all
 biv-chain[3]: r9c1{n5 n2} - b4n2{r5c1 r5c2} - c2n7{r5 r8} ==> r8c2 ≠ 5
stte
Notice that it is the second chain in the previous solution, which shows that the first chain was not necessary.
Here are 7 more solutions. The remaining 10 require either longer chains or whips.
biv-chain[4]: r5n6{c1 c9} - b6n3{r5c9 r5c8} - c8n5{r5 r9} - c1n5{r9 r1} ==> r1c1 ≠ 6
stte
biv-chain[4]: r5c2{n2 n7} - r5c7{n7 n5} - c8n5{r5 r9} - r9c1{n5 n2} ==> r5c1 ≠ 2, r9c2 ≠ 2
stte
biv-chain[4]: r5c7{n7 n5} - c8n5{r5 r9} - r9c1{n5 n2} - b4n2{r5c1 r5c2} ==> r5c2 ≠ 7
stte
biv-chain[4]: r5c1{n6 n2} - r9c1{n2 n5} - c8n5{r9 r5} - b6n3{r5c8 r5c9} ==> r5c9 ≠ 6
stte
biv-chain[4]: r1c1{n5 n6} - r5n6{c1 c9} - b6n3{r5c9 r5c8} - c8n5{r5 r9} ==> r9c1 ≠ 5
stte
biv-chain[4]: r5c2{n2 n7} - r5c7{n7 n5} - c8n5{r5 r9} - r9c1{n5 n2} ==> r9c2 ≠ 2, r5c1 ≠ 2
stte
z-chain[4]: r9c1{n5 n2} - c2n2{r9 r5} - c2n7{r5 r8} - r8n5{c2 .} ==> r9c8 ≠ 5
stte 
Remarks:
- Total computation time, including finding the 18 anti-backdoors and the 18 1-step solutions = 11.46s
- In the new version of 1-steppers, to be published soon, all is automatic and much simpler than in the current one; the user only has to specify the sudoku puzzle and the patterns he considers as 0-step (here only Singles and whips[1]):
- Code: Select all
 (find-sudoku-1-steppers-for-resolution-theory 
     ".....7.9...2.8.3.1.........3.5.2...8.....1...48...9...9....3.748...6..1....1....." 
     W1
)