Kyber Crystals

Post puzzles for others to solve here.

Kyber Crystals

Postby mith » Tue Apr 20, 2021 3:59 pm

Code: Select all
+-------+-------+-------+
| . 9 . | 8 . . | 7 . . |
| . . 6 | . . 5 | . 4 . |
| . . . | . 4 . | . . 3 |
+-------+-------+-------+
| . . 5 | . . 4 | . 2 . |
| . . . | . . . | . . . |
| . 7 . | 9 . . | 1 . . |
+-------+-------+-------+
| 6 . . | . 7 . | . . . |
| . 8 . | 3 . . | 9 . . |
| . . 1 | . . 6 | . 5 . |
+-------+-------+-------+
.9.8..7....6..5.4.....4...3..5..4.2...........7.9..1..6...7.....8.3..9....1..6.5.
mith
 
Posts: 996
Joined: 14 July 2020

Re: Kyber Crystals

Postby Cenoman » Tue Apr 20, 2021 7:40 pm

Solved with seven fishes:
Code: Select all
 +---------------------------+---------------------------+---------------------------+
 | <12345    9      <234     |  8      <1236     123     |  7      <16     <1256     |
 | *12378    123     6       | *127    *1239     5       |  28      4      *1289     |
 |  128-57   125     278     |  126-7   4        1279    |  2568    189-6   3        |
 +---------------------------+---------------------------+---------------------------+
 | *1389     136     5       | *167     138-6    4       |  368     2      *789-6    |
 |  1238-49  12346   2389-4  |  1256-7  1238-56  12378   |  34568   3789-6  8-45679  |
 | <2348     7      <2348    |  9      <23568    238     |  1      <368    <4568     |
 +---------------------------+---------------------------+---------------------------+
 |  6        2345    239-4   |  1245    7        89      |  2348    138     128-4    |
 | <245-7    8      <247     |  3      <125      12      |  9      <167    <1246-7   |
 | *237-49   234     1       |  24     *89       6       |  2348    5      *278-4    |
 +---------------------------+---------------------------+---------------------------+

SF(4)r168\c139
SF(5)r168\c159
SF(6)r168\c589
=> -4 r59c1, r57c3, r579c9, -5 r3c1, r5c5, r5c9, -6 r45c5, r45c8, r5c9
SF(7)r249\c149
SF(9)r249\c159
=> -7 r38c1, r35c4, r58c9, -9 r59c1, r5c9; +8 r5c9, NP(36)b6p18, HT(456)r5c247, HT(456)r168c9

Code: Select all
 +------------------------+------------------------+---------------------+
 | *12345   9     *234    |  8     *1236   *123    |  7      16    56    |
 | #1378-2  123    6      |  127    139-2   5      | #28     4     129   |
 |  1-28    125    78-2   |  126    4       179-2  |  256-8  189   3     |
 +------------------------+------------------------+---------------------+
 | #1389    136    5      |  167   #138     4      |  36     2     79    |
 | *123     46    *239    |  56    *123    *1237   |  45     79    8     |
 | *234-8   7     *2348   |  9     *2356-8 *238    |  1      36    45    |
 +------------------------+------------------------+---------------------+
 |  6       2345   39-2   |  1245   7       89     |  234-8  138   12    |
 | *245     8     *247    |  3     *125    *12     |  9      167   46    |
 |  379-2   234    1      |  24    #89      6      | #2348   5     27    |
 +------------------------+------------------------+---------------------+

JF(2)r1568c1356
SF(8)r249c157
=> -2 r239c1, r37c3, r2c5, r3c6, -8 r36c1, r6c5, r37c7; ste
Cenoman
Cenoman
 
Posts: 3001
Joined: 21 November 2016
Location: France

Re: Kyber Crystals

Postby pjb » Tue Apr 20, 2021 10:40 pm

An MSLS and 3 jellyfish:

3-5 MSLS at r168c13568 Links: 123r1 238r6 127r8 45c1 4c3 65c5 6c8 => -12 r1c9, -8 r6c9, -127 r8c9, -5 r3c1, -6 r3c8, -6 r4c5, -4 r5c1, -4 r5c3, -56 r5c5, -6 r5c8, -4 r7c3, -4 r9c1
(basics)
Jellyfish of 2s (r1568\c1356) => -2 r2c15, r3c136, r7c3, r9c1
(basics)
Jellyfish of 1s (r1358\c1568) => -1 r2c15, r4c15, r7c8
(basics)
Jellyfish of 3s (r1567\c1368) => -3 r249c1 => btte

Phil
pjb
2014 Supporter
 
Posts: 2673
Joined: 11 September 2011
Location: Sydney, Australia

Re: Kyber Crystals

Postby denis_berthier » Wed Apr 21, 2021 5:23 am

.
19 Subsets and Finned Fish

Resolution state at the start, and also after Singles and whips[1]:
Code: Select all
   +----------------------+----------------------+----------------------+
   ! 12345  9      234    ! 8      1236   123    ! 7      16     1256   !
   ! 12378  123    6      ! 127    1239   5      ! 28     4      1289   !
   ! 12578  125    278    ! 1267   4      1279   ! 2568   1689   3      !
   +----------------------+----------------------+----------------------+
   ! 1389   136    5      ! 167    1368   4      ! 368    2      6789   !
   ! 123489 12346  23489  ! 12567  123568 12378  ! 34568  36789  456789 !
   ! 2348   7      2348   ! 9      23568  238    ! 1      368    4568   !
   +----------------------+----------------------+----------------------+
   ! 6      2345   2349   ! 1245   7      1289   ! 2348   138    1248   !
   ! 2457   8      247    ! 3      125    12     ! 9      167    12467  !
   ! 23479  234    1      ! 24     289    6      ! 2348   5      2478   !
   +----------------------+----------------------+----------------------+
229 candidates, 1530 csp-links and 1530 links. Density = 5.86%

hidden-pairs-in-a-block: b8{n8 n9}{r7c6 r9c5} ==> r9c5 ≠ 2, r7c6 ≠ 2, r7c6 ≠ 1
swordfish-in-columns: n7{c3 c6 c8}{r8 r3 r5} ==> r8c9 ≠ 7, r8c1 ≠ 7, r5c9 ≠ 7, r5c4 ≠ 7, r3c4 ≠ 7, r3c1 ≠ 7
swordfish-in-columns: n9{c3 c6 c8}{r5 r7 r3} ==> r5c9 ≠ 9, r5c1 ≠ 9
hidden-pairs-in-a-block: b6{n7 n9}{r4c9 r5c8} ==> r5c8 ≠ 8, r5c8 ≠ 6, r5c8 ≠ 3, r4c9 ≠ 8, r4c9 ≠ 6
swordfish-in-columns: n6{c2 c4 c7}{r5 r4 r3} ==> r5c9 ≠ 6, r5c5 ≠ 6, r4c5 ≠ 6, r3c8 ≠ 6
swordfish-in-columns: n4{c2 c4 c7}{r5 r9 r7} ==> r9c9 ≠ 4, r9c1 ≠ 4, r7c9 ≠ 4, r7c3 ≠ 4, r5c9 ≠ 4, r5c3 ≠ 4, r5c1 ≠ 4
swordfish-in-columns: n5{c2 c4 c7}{r3 r7 r5} ==> r5c9 ≠ 5, r5c5 ≠ 5, r3c1 ≠ 5
naked-single ==> r5c9 = 8
naked-pairs-in-a-block: b6{r4c7 r6c8}{n3 n6} ==> r6c9 ≠ 6, r5c7 ≠ 6, r5c7 ≠ 3
hidden-triplets-in-a-row: r5{n4 n5 n6}{c2 c7 c4} ==> r5c4 ≠ 2, r5c4 ≠ 1, r5c2 ≠ 3, r5c2 ≠ 2, r5c2 ≠ 1
hidden-triplets-in-a-column: c9{n4 n5 n6}{r8 r6 r1} ==> r8c9 ≠ 2, r8c9 ≠ 1, r1c9 ≠ 2, r1c9 ≠ 1
swordfish-in-rows: n8{r2 r4 r9}{c7 c1 c5} ==> r7c7 ≠ 8, r6c5 ≠ 8, r6c1 ≠ 8, r3c7 ≠ 8, r3c1 ≠ 8
hidden-pairs-in-a-block: b1{n7 n8}{r2c1 r3c3} ==> r3c3 ≠ 2, r2c1 ≠ 3, r2c1 ≠ 2, r2c1 ≠ 1
hidden-triplets-in-a-column: c1{n7 n8 n9}{r9 r2 r4} ==> r9c1 ≠ 3, r9c1 ≠ 2, r4c1 ≠ 3, r4c1 ≠ 1
hidden-triplets-in-a-row: r3{n7 n8 n9}{c6 c3 c8} ==> r3c8 ≠ 1, r3c6 ≠ 2, r3c6 ≠ 1
swordfish-in-rows: n3{r2 r4 r9}{c2 c5 c7} ==> r7c7 ≠ 3, r7c2 ≠ 3, r6c5 ≠ 3, r5c5 ≠ 3, r1c5 ≠ 3
hidden-pairs-in-a-block: b9{n3 n8}{r7c8 r9c7} ==> r9c7 ≠ 4, r9c7 ≠ 2, r7c8 ≠ 1
hidden-triplets-in-a-column: c5{n3 n8 n9}{r2 r4 r9} ==> r4c5 ≠ 1, r2c5 ≠ 2, r2c5 ≠ 1
finned-x-wing-in-rows: n1{r4 r3}{c4 c2} ==> r2c2 ≠ 1
x-wing-in-rows: n1{r2 r7}{c4 c9} ==> r4c4 ≠ 1, r3c4 ≠ 1
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris


Return to Puzzles