Wintder, correct and thanks. I'll update the first post.
Also, here are a couple of multidigit Almost/Kraken Fish grouped nice loops. They where selected from Ruud's Top10000 except for the first one and AFAIC there are no equivalent grouped nice loop without fish. The thing that is common to all is the existence of multiple fins which see common nodes which is why they maintain a double implication outside of the fish. There are most likely examples which have only a single fin, but I typically only look for these guys if grouped nice loops fail so they tend to be more advanced.
- Code: Select all
Bivalued/1-element Kraken Row X-Wing (r36/c38=3, fins=r3c1|r6c3)
r2c3-3- (r36)Xwing:{r3c1|r6c3=3=r3c5} -3-r1c6-8- => r2c6<>8,r1c1<>8
+-----------------+-------------------+-------------------+
| 13-8 7 5 | 146 2 38c | 36 9 348 |
| 6 9 38bd | 147 5 37-8 | 12 1248 348 |
| 138# 2 4 | 16 368* 9 | 5 1368* 7 |
+-----------------+-------------------+-------------------+
| 2 4 9 | 3 17 17 | 8 5 6 |
| 35 15 6 | 8 4 2 | 137 137 9 |
| 7 18 38#d | 5 9 6 | 4 13* 2 |
+-----------------+-------------------+-------------------+
| 4 568 2 | 67 3678 3578 | 9 368 1 |
| 58 568 7 | 9 13 13458 | 236 23468 3458 |
| 9 3 1 | 2 68 458 | 67 4678 58 |
+-----------------+-------------------+-------------------+
#104: 2-element Kraken Row X-Wing (r47/c19=7, fins=r47c7)
r9c7=8= (r47)Xwing:{r7c7=7=r7c9|r4c79} -7-r6c59-8- r8c5=8= r8c23 -8- => r9c23<>8
+---------------------+----------------------+---------------------+
| 8 124 159 | 7 1245 1456 | 269 1569 3 |
| 12359 124 6 | 125 12345 8 | 279 1579 12579 |
| 1235 7 135 | 1256 9 12356 | 4 156 8 |
+---------------------+----------------------+---------------------+
| 1267* 9 4 | 3 125 125 | 67# 8 57* |
| 126 1268 18 | 12568 7 456 | 369 3569 459 |
| 367 5 378 | 68 48b 9 | 1 2 47b |
+---------------------+----------------------+---------------------+
| 1579* 138 2 | 1589 6 135 | 3789#c 4 179* |
| 1679 1368b 789b | 4 1238b 123 | 5 1379 1279 |
| 4 13-8 159-8 | 12589 1235 7 | 2389c 139 6 |
+---------------------+----------------------+---------------------+
#36: 1-element Kraken Row X-Wing (r29/c56=2, fins=r2c3|r9c2)
r3c5=1= (r29)Xwing:{r2c5=2=r9c2|r2c3} -2-r14678c3-1- => r3c3<>1
+-------------------+--------------------+-------------------+
| 468 138 134b | 456 7 9 | 2 1458 158 |
| 146 5 1249# | 8 126*c 246* | 479 147 3 |
| 7 128 249-1 | 245 1235c 2345 | 4589 6 1589 |
+-------------------+--------------------+-------------------+
| 2 4 57b | 567 568 1 | 3 9 5678 |
| 3 9 8 | 24567 256 2456 | 1 257 567 |
| 15 6 157b | 3 9 258 | 578 2578 4 |
+-------------------+--------------------+-------------------+
| 1458 7 1345b | 9 3568 3568 | 4568 1458 2 |
| 9 128 1245b | 256 2568 7 | 4568 3 158 |
| 58 23# 6 | 1 4 23* | 5789 578 5789 |
+-------------------+--------------------+-------------------+
#70: 1-element Kraken Row Swordfish (r349/c379=4, fins=r4c5|r9c6)
r8c3-4- (r349)Swordfish:{r39c3=4=r4c5|r9c6} -4-r7c56-2- => r7c3|r8c6<>2
+-----------------+--------------------+----------------------+
| 9 2 7 | 4 35 158 | 6 138 1358 |
| 345 368 4568 | 7 3569 1589 | 2 13489 134589 |
| 1 368 4568* | 569 2359 2589 | 345* 7 34589* |
+-----------------+--------------------+----------------------+
| 7 69 1 | 5689 4569# 3 | 48* 689 2 |
| 2 4 3 | 689 69 7 | 18 5 1689 |
| 8 5 69 | 2 1 469 | 7 349 3469 |
+-----------------+--------------------+----------------------+
| 45 789 89-2 | 3 246c 26c | 1458 168 1578 |
| 345 37 24b | 1 8 456-2 | 9 46 4567 |
| 6 1 458* | 59 7 459# | 345* 2 3458* |
+-----------------+--------------------+----------------------+