After basics.
Let x and y be the correct digits at r3c1, r2c2 respectively.
Then, we must have the following configuration.
- Code: Select all
.-----------------------------------------------------------.
| 2 3 4 | 6 7xy 19 | 57y 15 17y |
| 1 y 5 | 347 2 34 | 6 x 37 |
| x 7 6 | 3y 5 139 | 4 2 13y |
|---------------------+-------------------+-----------------|
| 345679 4569 39 | 2 1 8 | 579 45 79 |
| 4y 14x 2 | 5 49 7 | 3 6 1xy |
| 457y 145x 1xy | 49 3 6 | 57y 145 2 |
|---------------------+-------------------+-----------------|
| 6y 16x 7 | 1xy 6xy 5 | 2 3 4 |
| 346 2 3x | 347x 467x 349 | 1 y 5 |
| 345y 145x 13y | 134y 4y 2 | x 7 6 |
'-----------------------------------------------------------'
1. Grouped W-wing (4=y)r5c1-(y)r79c1=(y)r9c3-(y=4)r9c5 => -4 r5c5,r9c1
After simple elimination, we get the following
- Code: Select all
.-----------------------------------------------------------.
| 2 3 4 | 6 7xy 19 | 57y 15 17y |
| 1 y 5 | 37 2 4 | 6 x 37 |
| x 7 6 | 3y 5 139 | 4 2 13y |
|---------------------+-------------------+-----------------|
| 35679 569 39 | 2 1 8 | 579 4 79 |
| 4y 14x 2 | 5 9 7 | 3 6 1xy |
| 57y 15x 1xy | 4 3 6 | 57y 15 2 |
|---------------------+-------------------+-----------------|
| 6y 16x 7 | 1xy 6xy 5 | 2 3 4 |
| 46-3 2 *3x | 7-3x 467x *39 | 1 *y 5 |
| 35y 145 13y | 13y 4y 2 | x 7 6 |
'-----------------------------------------------------------'
Candidates (3,9,x,y) at r8c368 form a locked set (389), so -3 r8c1, -(3x) r8c4.
After some eliminations
- Code: Select all
.-----------------------------------------------------------.
| 2 3 4 | 6 7x 19 | 57y 15 17y |
| 1 y 5 | 3 2 4 | 6 x 7 |
| x 7 6 | y 5 19 | 4 2 13 |
|---------------------+-------------------+-----------------|
| 35679 569 3 | 2 1 8 | 579 4 9 |
| 4y 14x 2 | 5 9 7 | 3 6 1xy |
| 57y 15x 1xy | 4 3 6 | 57y 15 2 |
|---------------------+-------------------+-----------------|
| 6y 16 7 | x 6y 5 | 2 3 4 |
| 46 2 3x | 7 46 39 | 1 y 5 |
| 35y 145 13y | 1 4y 2 | x 7 6 |
'-----------------------------------------------------------'
HS: r1c5=7, r3c9=3, r3c6=1 (=> y=8, x=9); ste
Edit: re-posted solution with correction after step 1.