Kaleidoscope (SER 8.8)

Post puzzles for others to solve here.

Kaleidoscope (SER 8.8)

Postby jovi_al01 » Wed Sep 21, 2022 4:18 am

Code: Select all
.......63
......7..
.57.2....
96584....
78..65...
.4..97...
.78.56.9.
.94..81..
.........

.......63......7...57.2....96584....78..65....4..97....78.56.9..94..81...........


intrigued to see what people think of this :)
edit: i'm aware that this is not minimal, but the digits that can be removed prevent a clean presentation of the idea i'd like to show off :)
User avatar
jovi_al01
 
Posts: 102
Joined: 26 July 2021

Re: Kaleidoscope (SER 8.8)

Postby shye » Wed Sep 21, 2022 5:49 am

awesome puzzle!
after a naked triple

Code: Select all
.---------------------.---------------------.------------------------.
| 1248    12    129   |  14579   178  149   | 24589   6       3      |
| 123468  123   12369 |  134569  138  1349  | 7       12458   124589 |
| 13468   5     7     |  13469   2    1349  | 489     148     1489   |
:---------------------+---------------------+------------------------:
| 9       6     5     |  8       4    123   | 23      1237    127    |
| 7       8    X123   | Z123     6    5     | 2349    1234    1249   |
|Z123     4    Y123   | X123     9    7     | 568     58      568    |
:---------------------+---------------------+------------------------:
|*123     7     8     | *1234    5    6     | 234     9       24     |
|*2356    9     4     | *237     37   8     | 1       2357    2567   |
|*12356  *123  *1236  | *123479 *137 *12349 | 234568  234578  245678 |
'---------------------'---------------------'------------------------'

let 123 in b4 and r6 be represented by xyz
xyUR in r56c34, guardian zr5c4

DNL
1|2r6c1 - b7p147 = b7p789 - b8p789 = b8p147 -- r6c1
=> -12r6c1, -12r5c4 stte

XSudo Input: Show
9 Truths = {5N34 6N134 1B78 2B78}
12 Links = {123r6 12r9 1c14 2c14 123b4}
3 AURs = (21)R65C43, (31)R65C43, (32)R65C43
AUR points {aur 1r5c3 2r5c3 3r5c3 1r5c4 2r5c4 3r5c4 1r6c3 2r6c3 3r6c3 }
7 Eliminations, 2 Assignments --> r6c34<>3, r5c4<>12, r6c1<>12, r5c3<>3, r5c4=3, r6c1=3
User avatar
shye
 
Posts: 327
Joined: 12 June 2021

Re: Kaleidoscope (SER 8.8)

Postby P.O. » Wed Sep 21, 2022 7:34 am

Code: Select all
r4c7{n2 n3} - b5n3{r4c6 r56c4} - r7n3{c4 c1} - r7n1{c1 c4} - b5n1{r56c4 r4c6} => r4c6 <> 2
ste.
P.O.
 
Posts: 1738
Joined: 07 June 2021

Re: Kaleidoscope (SER 8.8)

Postby totuan » Wed Sep 21, 2022 8:18 am

Code: Select all
*-----------------------------------------------------------------------------*
 | 1248    12      129     | 14579   178     149     | 24589   6       3       |
 | 123468  123     12369   | 134569  138     1349    | 7       12458   124589  |
 | 13468   5       7       | 13469   2       1349    | 489     148     1489    |
 |-------------------------+-------------------------+-------------------------|
 | 9       6       5       | 8       4      %123     |%23      1237    127     |
 | 7       8       123     |#123     6       5       | 2349    1234    1249    |
 | 123     4       123     |#123     9       7       | 23568   12358   12568   |
 |-------------------------+-------------------------+-------------------------|
 | 123     7       8       |#1234    5       6       |*234     9      *24      |
 | 2356    9       4       |#237    $37      8       | 1       2357    2567    |
 | 12356   123     1236    | 123479 $137    %12349   | 234568  234578  245678  |
 *-----------------------------------------------------------------------------*

My path for this one: Look at (12347)r5678c4 => (4)r7c4=(7)r8c4

(4)r7c4==(7)r8c4-(7=13)*r89c5-(13=24)r7c49-(24=3)r7c7-(3=2)r4c7-r4c6=r9c6 => r7c4<>2 & r7c4<>13 at ‘*’, stte

Thanks for the puzzle!
totuan
totuan
 
Posts: 246
Joined: 25 May 2010
Location: vietnam

Re: Kaleidoscope (SER 8.8)

Postby yzfwsf » Wed Sep 21, 2022 11:18 am

Almost Locked Set XZ-Rule: A=r568c4 {1237},B=r89c5 {137}, X=7, Z=13 => r7c4<>1 r9c4<>1 r7c4<>3 r9c4<>3 , stte
yzfwsf
 
Posts: 914
Joined: 16 April 2019

Re: Kaleidoscope (SER 8.8)

Postby Cenoman » Wed Sep 21, 2022 2:55 pm

Code: Select all
 +-------------------------+-------------------------+-----------------------------+
 |  1248     12    129     |  14579    178   149     |  24589    6        3        |
 |  123468   123   12369   |  134569   138   1349    |  7        12458    124589   |
 |  13468    5     7       |  13469    2     1349    |  489      148      1489     |
 +-------------------------+-------------------------+-----------------------------+
 |  9        6     5       |  8        4     13-2    | a23       1237     127      |
 |  7        8     123     | d123      6     5       |  2349     1234     1249     |
 |  123      4     123     | d123      9     7       |  568      58       568      |
 +-------------------------+-------------------------+-----------------------------+
 | c123      7     8       | c1234     5     6       | b234      9        24       |
 |  2356     9     4       |  237      37    8       |  1        2357     2567     |
 |  12356    123   1236    |  123479   137   12349   |  234568   234578   245678   |
 +-------------------------+-------------------------+-----------------------------+

(2=3)r4c7 - r7c7 = (13)r7c14 - (13=2)r56c4 => -2 r4c6; ste
Cenoman
Cenoman
 
Posts: 2982
Joined: 21 November 2016
Location: France

Re: Kaleidoscope (SER 8.8)

Postby jovi_al01 » Wed Sep 21, 2022 5:29 pm

shye and yzf found what i was looking for!

with the digit relabeling trick on [123] in b45, one must prevent a UR. this leads to r6c1 == r5c4. locked candidates on r6c1 in b7 makes r8c5 a hidden single, disambiguating r6c1 and r5c4.
the alternative entry was that ALS XZ-rule found by yzf, for those of you who dislike uniqueness ;)
User avatar
jovi_al01
 
Posts: 102
Joined: 26 July 2021


Return to Puzzles