June 7, 2015

Post puzzles for others to solve here.

June 7, 2015

Postby ArkieTech » Sat Jun 06, 2015 11:09 pm

Code: Select all
 *-----------*
 |...|...|..8|
 |.7.|.1.|.92|
 |..9|..2|7..|
 |---+---+---|
 |4.7|...|9..|
 |3..|..6|...|
 |...|...|4.6|
 |---+---+---|
 |52.|.43|.1.|
 |.4.|.5.|...|
 |...|.7.|.3.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: June 7, 2015

Postby SteveG48 » Sat Jun 06, 2015 11:59 pm

Code: Select all
 *-----------------------------------------------------------*
 | 2     35    4     | 357   39    79    | 1     6     8     |
 | 68    7     56    | 58    1     4     | 3     9     2     |
 | 18    138   9     | 38    6     2     | 7     4     5     |
 *-------------------+-------------------+-------------------|
 | 4     6     7     | 1    *28    5     | 9    *28    3     |
 | 3     589   25    | 4    *9-28  6     |*28    7     1     |
 | 189   189   12    | 37    2389  79    | 4     5     6     |
 *-------------------+-------------------+-------------------|
 | 5     2     8     | 9     4     3     | 6     1     7     |
 | 7     4     3     | 6     5     1     |*28   *28    9     |
 | 169   19    16    | 2     7     8     | 5     3     4     |
 *-----------------------------------------------------------*


L-shaped DP, r4c58,r5c57,r8c78 => -28 r5c5 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: June 7, 2015

Postby bat999 » Sun Jun 07, 2015 12:49 am

Code: Select all
.---------------.----------------.-----------.
| 2    *5-3  4  | 357  *39    79 | 1   6   8 |
| 68    7    56 | 58    1     4  | 3   9   2 |
| 18    138  9  | 38    6     2  | 7   4   5 |
:---------------+----------------+-----------:
| 4     6    7  | 1     28    5  | 9   28  3 |
| 3    *589  25 | 4     289   6  | 28  7   1 |
| 189   189  12 | 37    2389  79 | 4   5   6 |
:---------------+----------------+-----------:
| 5     2    8  | 9     4     3  | 6   1   7 |
| 7     4    3  | 6     5     1  | 28  28  9 |
| 169   19   16 | 2     7     8  | 5   3   4 |
'---------------'----------------'-----------'

There's a contradiction if r1c2 is 3.
r5c2 becomes 5 and r1c5 becomes 9, so there are no 9s left on row 5.
=> -3 r1c2 ; stte
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: June 7, 2015

Postby Marty R. » Sun Jun 07, 2015 1:18 am

Code: Select all
+------------+-------------+---------+
| 2   35  4  | 357 39   79 | 1  6  8 |
| 68  7   56 | 58  1    4  | 3  9  2 |
| 18  138 9  | 38  6    2  | 7  4  5 |
+------------+-------------+---------+
| 4   6   7  | 1   28   5  | 9  28 3 |
| 3   589 25 | 4   289  6  | 28 7  1 |
| 189 189 12 | 37  2389 79 | 4  5  6 |
+------------+-------------+---------+
| 5   2   8  | 9   4    3  | 6  1  7 |
| 7   4   3  | 6   5    1  | 28 28 9 |
| 169 19  16 | 2   7    8  | 5  3  4 |
+------------+-------------+---------+

Play this puzzle online at the Daily Sudoku site

DP (18)r36c12: 3r3c2=9r6c12-(9=7)r6c6,-(7=9)r1c6-(9=3)r1c5=>r1c2,r3c4<>3
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: June 7, 2015

Postby pjb » Sun Jun 07, 2015 2:55 am

Code: Select all
 2      a5-3     4      | 357   d39     79     | 1      6      8     
 68      7       56     | 58     1      4      | 3      9      2     
 18      138     9      | 38     6      2      | 7      4      5     
------------------------+----------------------+---------------------
 4       6       7      | 1      28     5      | 9      28     3     
 3      b589     25     | 4     c289    6      | 28     7      1     
 189     189     12     | 37     2389   79     | 4      5      6     
------------------------+----------------------+---------------------
 5       2       8      | 9      4      3      | 6      1      7     
 7       4       3      | 6      5      1      | 28     28     9     
 169     19      16     | 2      7      8      | 5      3      4     

Chain equivalent of bat999's?
(5)r1c2 = (5-9)r5c2 = r5c5 - (9=3)r1c5 => -3 r1c2; stte
I also first came up with 3r3c2 = 9r6c12 - (9=7)r6c6 - (7=3)r6c = > -3 r3c4; stte; too close to Marty's
Phil
Last edited by pjb on Sun Jun 07, 2015 12:07 pm, edited 1 time in total.
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: June 7, 2015

Postby Leren » Sun Jun 07, 2015 11:32 am

Code: Select all
*--------------------------------------------------------------*
| 2    a35    4      |f37-5 d39   e79     | 1     6     8      |
| 68    7     56     | 58    1     4      | 3     9     2      |
| 18    138   9      | 38    6     2      | 7     4     5      |
|--------------------+--------------------+--------------------|
| 4     6     7      | 1     28    5      | 9     28    3      |
| 3    b589   25     | 4    c289   6      | 28    7     1      |
| 189   189   12     | 37    2389  79     | 4     5     6      |
|--------------------+--------------------+--------------------|
| 5     2     8      | 9     4     3      | 6     1     7      |
| 7     4     3      | 6     5     1      | 28    28    9      |
| 169   19    16     | 2     7     8      | 5     3     4      |
*--------------------------------------------------------------*

(5) r1c2 = (5-9) r5c2 = r5c5 - r1c5 = (9-7) r1c6 = (7) r1c4 => - 5 r1c4; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: June 7, 2015

Postby Ngisa » Sun Jun 07, 2015 3:08 pm

Code: Select all
+------------+-------------+---------+
| 2   d35  4  | 357 a39   79 | 1  6  8 |
| 68  7   56 | 58  1    4  | 3  9  2 |
| 18  e138 9  | f8-3  6    2  | 7  4  5 |
+------------+-------------+---------+
| 4   6   7  | 1   28   5  | 9  28 3 |
| 3   c589 25 | 4   b289  6  | 28 7  1 |
| 189 189 12 | 37  2389 79 | 4  5  6 |
+------------+-------------+---------+
| 5   2   8  | 9   4    3  | 6  1  7 |
| 7   4   3  | 6   5    1  | 28 28 9 |
| 169 19  16 | 2   7    8  | 5  3  4 |
+------------+-------------+---------+
(3=9)r1c5-r5c5=(9-5)r5c2=(5-3)r1c2=r3c2-(3=8)r3c4 => -3r3c4; stte
Ngisa
 
Posts: 1413
Joined: 18 November 2012

Re: June 7, 2015

Postby bat999 » Mon Jun 15, 2015 6:16 pm

pjb wrote:... Chain equivalent of bat999's?
(5)r1c2 = (5-9)r5c2 = r5c5 - (9=3)r1c5 => -3 r1c2; stte...

Yes, I understand now. :roll:
It is an example of the Type 3 Discontinuous Nice Loop described here ---> http://www.paulspages.co.uk/sudokuxp/howtosolve/niceloops.htm

"If the first square has a weak link and a strong link with different candidates, then the weak link's candidate can be eliminated from the square."

In this case...
The weak link of r1c2 is 3 (from r1c5) and the strong link of r1c2 is 5 (to r5c2).

So if r1c2 is not 5 then the 3 can be eliminated from r1c2.
But that would leave no candidates left in r1c2, there's the contradiction. :lol:
Must keep that 5 in r1c2. 8-)
=> -3 r1c2; stte
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: June 7, 2015

Postby eleven » Mon Jun 15, 2015 8:15 pm

Bat,

not that i want to advertise it, but if you look at the AIC you can clearly see, that either (5)r1c2 or (3)r1c5 must be true (or both).
(That's what you found out, too.)
In both cases 3 cannot be in r1c2.

PS: Note, that if you have such a link aX=bY ("a in X or b in Y"), where X and Y see one another, you can both eliminate a from Y and b from X (as in L-wings).
eleven
 
Posts: 3177
Joined: 10 February 2008

Re: June 7, 2015

Postby bat999 » Mon Jun 15, 2015 9:27 pm

eleven wrote:... but if you look at the AIC you can clearly see...

Hi
Your post didn't help me. :?:
Maybe I'll look back at it another time.
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: June 7, 2015

Postby bat999 » Sun Jun 28, 2015 10:10 am

eleven wrote:...PS: Note, that if you have such a link aX=bY ("a in X or b in Y"), where X and Y see one another, you can both eliminate a from Y and b from X ...

Yes, I can see this now. Another rule to remember. :)
But the Type 3 Discontinuous Nice Loop does it automatically...
It adds the last link to the chain (from r1c5 to r1c2) and returns to the start square to zap the candidate. :D

It seems to be a matter of preference...
Some people in this forum are comfortable to express almost anything as an AIC in Eureka notation.
And some people are not.
:lol:
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: June 7, 2015

Postby daj95376 » Sun Jun 28, 2015 4:59 pm

bat999 wrote:
eleven wrote:...PS: Note, that if you have such a link aX=bY ("a in X or b in Y"), where X and Y see one another, you can both eliminate a from Y and b from X ...

Yes, I can see this now. Another rule to remember. :)
But the Type 3 Discontinuous Nice Loop does it automatically...
It adds the last link to the chain (from r1c5 to r1c2) and returns to the start square to zap the candidate. :D

It seems to be a matter of preference...
Some people in this forum are comfortable to express almost anything as an AIC in Eureka notation.
And some people are not.

Not quite.

Although a Type 3 Discontinuous Nice Loop is often effective, there are times when it falls short. Consider the following puzzle.

Code: Select all
 +-----------------------+
 | . 4 . | . . . | . . . |
 | . . . | . . 3 | . . 7 |
 | . . 7 | 8 1 . | . 5 9 |
 |-------+-------+-------|
 | 5 1 . | 7 . . | . . 3 |
 | . 6 9 | . . . | 5 7 . |
 | 4 . . | . . 5 | . 1 2 |
 |-------+-------+-------|
 | 6 5 . | . 9 7 | 3 . . |
 | 8 . . | 5 . . | . . . |
 | . . . | . . . | . 4 . |
 +-----------------------+   # June 25, 2015

 +--------------------------------------------------------------+
 |  19    4     5     | e269   7    f269   |  16    3     8     |
 |  19    8     6     | c49    5     3     |  14    2     7     |
 |  23    23    7     |  8     1     46    |  46    5     9     |
 |--------------------+--------------------+--------------------|
 |  5     1     28    |  7     24   a249   |  89    6     3     |
 |  23    6     9     |  123   238   128   |  5     7     4     |
 |  4     7     38    | b369   36    5     |  89    1     2     |
 |--------------------+--------------------+--------------------|
 |  6     5     24    | d24    9     7     |  3     8     1     |
 |  8     23    1234  |  5     234   124   |  7     9     6     |
 |  7     9     13    |  136   368   168   |  2     4     5     |
 +--------------------------------------------------------------+
 # 47 eliminations remain

Here is a chain in Eureka notation that duplicates a Type 3 Discontinuous Nice Loop for its single elimination -- -2r4c6.

Code: Select all
 (9)r4c6 = (9)r6c4 - (9=4)r2c4 - (4=2)r7c4 - (2)r1c4 = (2)r1c6 - (2)r4c6

This elimination doesn't advance you any further. Now, drop the final weak link, and you have the AIC logic:

Code: Select all
 (9)r4c6 = (9)r6c4 - (9=4)r2c4 - (4=2)r7c4 - (2)r1c4 = (2)r1c6  =>  -2 r4c6 & -9 r1c6

The additional elimination cracks the puzzle and it solves with Singles.


Yes, you could have started a Type 3 Discontinuous Nice Loop at (2)r1c6 and derived -9r1c6, but that's a separate chain that you might have missed. Also, it sometimes takes both eliminations to crack a puzzle. That's one step/chain for AIC, and two steps/chains using Type 3 Discontinuous Loops.

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: June 7, 2015

Postby bat999 » Sun Jun 28, 2015 5:51 pm

daj95376 wrote:...Although a Type 3 Discontinuous Nice Loop is often effective, there are times when it falls short. Consider the following puzzle...

Yes daj, that's a good example.
The AIC from left to right zaps the 9 at r1c4 continues to put the 2 into r1c6 that eliminates the 2 from r4c6.
The AIC from right to left forces 2 into r1c4 and continues to put 9 into r4c6.
Kills two birds with one stone. :D
Using a Nice Loop would have needed more work to solve the puzzle. :cry:
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: June 7, 2015

Postby ronk » Sun Jun 28, 2015 8:27 pm

daj95376 wrote:Here is a chain in Eureka notation that duplicates a Type 3 Discontinuous Nice Loop for its single elimination -- -2r4c6.

Code: Select all
 (9)r4c6 = (9)r6c4 - (9=4)r2c4 - (4=2)r7c4 - (2)r1c4 = (2)r1c6 - (2)r4c6

This elimination doesn't advance you any further. Now, drop the final weak link, and you have the AIC logic:

Code: Select all
 (9)r4c6 = (9)r6c4 - (9=4)r2c4 - (4=2)r7c4 - (2)r1c4 = (2)r1c6  =>  -2 r4c6 & -9 r1c6

The additional elimination cracks the puzzle and it solves with Singles.

bat999 wrote:The AIC from left to right zaps the 9 at r1c4 continues to put the 2 into r1c6 that eliminates the 2 from r4c6.
The AIC from right to left forces 2 into r1c4 and continues to put 9 into r4c6.
Kills two birds with one stone. :D
Using a Nice Loop would have needed more work to solve the puzzle. :cry:

Perhaps not. The following uses "pauses" often seen in AIC notation.
Code: Select all
r1c6 -9- r4c6 =9= r6c4 -9- r2c4 -4- r7c4 -2- r1c4 =2= r1c6 -2- r4c6  ==> r1c6<>9, r4c6<>2

Pause labels could be added, ala David P Bird, but putting the same label on the two appearances of r1c6 seems redundant and pointless. Ditto for r4c6.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA


Return to Puzzles