June 26, 2017

Post puzzles for others to solve here.

June 26, 2017

Postby ArkieTech » Sun Jun 25, 2017 11:02 pm

Code: Select all
 *-----------*
 |...|...|96.|
 |..6|.9.|..8|
 |.85|...|..3|
 |---+---+---|
 |...|.49|28.|
 |5..|.8.|..1|
 |.32|65.|...|
 |---+---+---|
 |6..|...|87.|
 |2..|.6.|1..|
 |.54|...|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: June 26, 2017

Postby Leren » Mon Jun 26, 2017 12:33 am

Code: Select all
*-----------------------------------------------------------------------*
| 4     c127    17      | 58     3      58      | 9      6     d27      |
| 3      27     6       | 1247   9      247     | 5      124    8       |
| 9      8      5       | 1247   127    6       | 47     124    3       |
|-----------------------+-----------------------+-----------------------|
| 17     6      17      | 3      4      9       | 2      8      5       |
| 5      4      9       | 27     8      27      | 6      3      1       |
| 8      3      2       | 6      5      1       | 47     49     79      |
|-----------------------+-----------------------+-----------------------|
| 6     b19     3       | 12459 a12     245     | 8      7      49-2    |
| 2      79     8       | 479    6      3       | 1      5      49      |
| 17     5      4       | 12789  127    278     | 3      29     6       |
*-----------------------------------------------------------------------*

M Wing Type 1B : (2=1)r7c5 - r7c2 = (1-2) r1c2 = (2) r1c9 => - 2 r7c9; stte

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: June 26, 2017

Postby Marty R. » Mon Jun 26, 2017 1:05 am

Code: Select all


+--------------------------+--------------------------+--------------------------+
| 4       127     17       | 58      3       58       | 9       6       27       |
| 3       27      6        | 1247    9       247      | 5       124     8        |
| 9       8       5        | 1247    127     6        | 47      124     3        |
+--------------------------+--------------------------+--------------------------+
| 17      6       17       | 3       4       9        | 2       8       5        |
| 5       4       9        | 27      8       27       | 6       3       1        |
| 8       3       2        | 6       5       1        | 47      49      79       |
+--------------------------+--------------------------+--------------------------+
| 6       19      3        | 12459   12      245      | 8       7       249      |
| 2       79      8        | 479     6       3        | 1       5       49       |
| 17      5       4        | 12789   127     278      | 3       29      6        |
+--------------------------+--------------------------+--------------------------+



M-Wing (27) (2=7)r2c2-r1c23=(7-2)r1c9=2r7c9
=> pincers 2r2c2=2r7c9
2r2c2-r1c2=r1c9-(2=497)r876c9
2r7c9-(2=97)r16c9=> 7r6c9
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: June 26, 2017

Postby pjb » Mon Jun 26, 2017 6:24 am

Code: Select all
 4      e17-2    17     | 58     3      58     | 9      6     a27     
 3       27      6      | 1247   9      247    | 5      124    8     
 9       8       5      | 1247   127    6      | 47     124    3     
------------------------+----------------------+---------------------
 17      6       17     | 3      4      9      | 2      8      5     
 5       4       9      | 27     8      27     | 6      3      1     
 8       3       2      | 6      5      1      | 47     49     79     
------------------------+----------------------+---------------------
 6      d19      3      | 12459 c12     245    | 8      7     b249   
 2       79      8      | 479    6      3      | 1      5      49     
 17      5       4      | 12789  127    278    | 3      29     6     

(2)r1c9 = r7c9 - (2=1)r7c5 - r7c2 = (1-2)r2c1 => -2 r1c2; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: June 26, 2017

Postby Ngisa » Mon Jun 26, 2017 2:10 pm

Code: Select all
+-------------+------------------+---------------+
| 4   127  17 |  58     3    58  |  9   6    27  |
| 3   127  6  |  1247   9    247 |  5   124  8   |
| 9   8    5  |  1247  h127  6   |  g47 124  3   |
+-----------+---------------+--------------------+
| 17  6    17 |  3      4    9   |  2   8    5   |
| 5   4    9  |  27     8    27  |  6   3    1   |
| 8   3    2  |  6      5    1   | f47 e49   479 |
+-------------+------------------+---------------+
| 6  a19   3  |  12459 b12   245 |  8   7   c249 |
| 2  a79   8  |  49-7   6    3   |  1   5    49  |
| 1-7 5    4  |  12789 i127  278 |  3  d29   6   |
+-------------+------------------+---------------+

(7=1)r78c2 - (1=2)r7c5 - r7c9 = (2-9)r9c8 = (9-4)r6c8 = (4-7)r6c7 = r3c7 - r3c5 = (7)r9c5 => - 7 r9c1, r8c4; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: June 26, 2017

Postby Sudtyro2 » Mon Jun 26, 2017 2:15 pm

Marty R. wrote:
M-Wing (27) (2=7)r2c2-r1c23=(7-2)r1c9=2r7c9
=> pincers 2r2c2=2r7c9
2r2c2-r1c2=r1c9-(2=497)r876c9
2r7c9-(2=97)r16c9=> 7r6c9
Marty, seems like 9r6c9 is shown true by the ALS and not the (lower) 7...
The ALS expands to -(2=7)r1c9 - (7=9)r6c9.

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: June 26, 2017

Postby Cenoman » Mon Jun 26, 2017 3:51 pm

Code: Select all
 +------------------+----------------------+-------------------+
 |  4   a127   17   |  58      3     58    |  9    6    b27    |
 |  3    27    6    |  1247    9     247   |  5    124   8     |
 |  9    8     5    |  1247    127   6     |  47   124   3     |
 +------------------+----------------------+-------------------+
 |  17   6     17   |  3       4     9     |  2    8     5     |
 |  5    4     9    |  27      8     27    |  6    3     1     |
 |  8    3     2    |  6       5     1     |  47   49    79    |
 +------------------+----------------------+-------------------+
 |  6  aB19    3    | A12459  B12    245   |  8    7   Bz49-2  |
 |  2    79    8    |  479     6     3     |  1    5     49    |
 |  17   5     4    |  12789   127   278   |  3    29    6     |
 +------------------+----------------------+-------------------+

Kraken row (9)r7c249
(9-12)r17c2 = (2)r7c9
(9)r7c4 - (9=4)r7c129
(9)r7c9
=> -2 r7c9; stte

Cenoman
Cenoman
Cenoman
 
Posts: 2977
Joined: 21 November 2016
Location: France

Re: June 26, 2017

Postby Sudtyro2 » Mon Jun 26, 2017 7:15 pm

Code: Select all
*----------------------------------------------------------------*
| 4      127    17   | B58     3      58   |  9      6     d27   |
| 3      27     6    | a1247   9      247  |  5      124    8    |
| 9      8      5    | a1247  b127    6    | c47     124    3    |
|--------------------+---------------------+---------------------|
| 17     6      17   |  3      4      9    |  2      8      5    |
| 5      4      9    |  27     8      27   |  6      3      1    |
| 8      3      2    |  6      5      1    |  47     49     79   |
|--------------------+---------------------+---------------------|
| 6      19     3    | A12459  1-2    245  |  8      7    Ee249Z |
| 2      79     8    |  479    6      3    |  1      5      49   |
| 17     5      4    | C12789X 127    278  |  3     D29Y    6    |
*----------------------------------------------------------------*
Kraken column (1)c4, to get that isolated stte 2-digit. Seems to need a network.
Code: Select all
1r23c4 - 1r3c5
  ||       ||
  ||     7r3c5 - r3c7 = (7-2)r1c9 = 2r7c9             - 2r7c5; [label a]
  ||       ||
  ||     2r3c5                                        - 2r7c5;
  ||
(1-5)r7c4 = (5-8)r1c4 = (8-9)r9c4 = (9-2)r9c8 = 2r7c9 - 2r7c5; [label A]
  ||
(1-9)r9c4                         = (9-2)r9c8 = 2r7c9 - 2r7c5; [label X]

Note: The last two chains for the 1-digits might could be combined to form an AHS.
(158-9)r179c4 = (9-2)r9c8 = 2r7c9 - 2r7c5. Need help from Cenoman! :)

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: June 26, 2017

Postby Cenoman » Mon Jun 26, 2017 9:25 pm

SteveC wrote:
Need help from Cenoman!

Hi Steve,

The resulting step of your finding is a kraken cell (127)c4

The notation (158-9)r179c4 is a little ambiguous here. The common understanding is the weak link 1r79c4 - 9r79c4 which encompasses the weak link of interest 1r79c4 - 9r9c4. But the strong link 9r179c4 = 9r9c8 is not obvious to read...

Then, if you want to avoid the following (unambiguous, but cumbersome):

Kraken cell (127)r3c5 => -2 r7c5
(1)r3c5 - r23c4 = (158-9)r179c4 = r8c4 - r9c4 = (9-2)r9c8 = (2)r7c9
(2)r3c5
(7)r3c5 - r3c7 = (7-2)r1c9 = (2)r7c9

I would suggest:

Kraken cell (127)r3c5 => -2 r7c5
(1)r3c5 - r23c4 = (158)r179c4 - (9)r9c4 = (9-2)r9c8 = (2)r7c9
(2)r3c5
(7)r3c5 - r3c7 = (7-2)r1c9 = (2)r7c9

Edit (June 27, 9:00 GMT): of course, there is also an escape way, use the ALS in C4 instead of the AHS (one less node) !
Kraken cell (127)r3c5 => -2 r7c5
(1)r3c5 - (1=9)r2358c4 - (9)r9c4 = (9-2)r9c8 = (2)r7c9
(2)r3c5
(7)r3c5 - r3c7 = (7-2)r1c9 = (2)r7c9

Cenoman
Cenoman
Cenoman
 
Posts: 2977
Joined: 21 November 2016
Location: France

Re: June 26, 2017

Postby Sudtyro2 » Tue Jun 27, 2017 4:39 pm

Cenoman wrote: The notation (158-9)r179c4 is a little ambiguous here. The common understanding is the weak link 1r79c4 - 9r79c4 which encompasses the weak link of interest 1r79c4 - 9r9c4. But the strong link 9r179c4 = 9r9c8 is not obvious to read...
Hi Cenoman,

As usual, many thanks for your extremely helpful comments. I had previously understood the weak-link issue via Myth's Weak ALS discussion, but had not realized the potential strong-link problem that you've so astutely pointed out.

Thanks also for your three unambiguous alternatives. I had thought about doing a "lasso" on those last two chains, but that would have been extra-cumbersome, to say the least. Plus, two chains vs. one means I can halve my cake and eat it twice. :)

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013


Return to Puzzles