- Code: Select all
*-----------------------------------------------------------*
| 67 *56 4 | 2 1 9 | 78 3 *568 |
| 3 *569 17 | 4 8 57 | 2 157-9*56 |
| 179 8 2 | 57 6 3 | 79 1579 4 |
*-------------------+-------------------+-------------------|
| 2 7 5 | 9 4 6 | 1 8 3 |
| 8 1 6 | 57 3 57 | 4 2 9 |
| 4 3 9 | 1 2 8 | 5 6 7 |
*-------------------+-------------------+-------------------|
| 679 @69 37 | 8 5 1 | 3679 4 2 |
| 569 2 8 | 3 7 4 | 69 59 1 |
| 157 4 137 | 6 9 2 | 378 57 #58 |
*-----------------------------------------------------------*
OK, with all this new knowledge, let me now try an “externals” approach on AUR(56)r12c29 ala Ted's methodology.
Choose (6)r7c2 to cover the UR 6s in c2. The UR 5s in c2 are empty of externals.
Choose (5)r9c9 to cover the UR 5s in c9. The UR 6s in c9 are empty of externals.
I think that covers all 8 UR digits. Now form the SIS and aim, say, for Luke's elimination:
- Code: Select all
UR
||
(6)r7c2-(9)r7c2=(9)r2c2---(9)r2c8
||
(5)r9c9-(5=9)r8c8---------(9)r2c8; ste
Or use the SIS to develop a single AIC:
- Code: Select all
(9)r2c2=(9)r7c2-(6)r7c2=(5)r9c9-(5=9)r8c8 => r2c8<>9; ste
SteveC