June 19, 2020

Post puzzles for others to solve here.

June 19, 2020

Postby tarek » Fri Jun 19, 2020 6:45 am

Code: Select all
+-------+-------+-------+
| . . . | 1 2 . | . . 9 |
| . . . | . 9 8 | 1 4 . |
| . . . | 4 . . | . 8 5 |
+-------+-------+-------+
| 8 . 4 | . . 6 | . 5 . |
| 3 7 . | . . . | . . . |
| . 9 . | 8 . . | . 7 . |
+-------+-------+-------+
| . 1 . | . . . | . . . |
| . 3 5 | 7 . 9 | . . . |
| 2 . 7 | . . . | . . . |
+-------+-------+-------+
...12...9....9814....4...858.4..6.5.37........9.8...7..1........357.9...2.7......

Play this puzzle online

Download Sukaku Explainer
User avatar
tarek
 
Posts: 3762
Joined: 05 January 2006

Re: June 19, 2020

Postby SpAce » Fri Jun 19, 2020 8:38 am

Code: Select all
.----------.---------------------.--------------------.
| 4  8  3  | 1    2       5      |  7      6     9    |
| 7  5  2  | 6    9       8      |  1      4     3    |
| 1  6  9  | 4    3       7      |  2      8     5    |
:----------+---------------------+--------------------:
| 8  2  4  | 39   7       6      | b39     5     1    |
| 3  7  16 | 259  145     124    |  4689  b29    2468 |
| 5  9  16 | 8    14     a12[3]4 | b346    7     246  |
:----------+---------------------+--------------------:
| 9  1  8  | 25   456     24     |  456    3     7    |
| 6  3  5  | 7    48-1    9      |  48    c2(1)  248  |
| 2  4  7  | 35   1568  a[1]3    |  5689   9-1   68   |
'----------'---------------------'--------------------'

(1,3)r96c6 = (392)b6p715 - (2=1)r8c8 => -1 r8c5,r9c8; stte

uncompressed, slightly different: Show
(1=3)r9c6 - r6c6 = r6c7 - (3=9)r4c7 - r9c7 = (9)r9c8 => -1 r9c8; stte

Just for fun... As many probably know, the Apollo Guidance Computers were implemented with just NOR gates. If they got us to the moon, they should probably work for sudoku too. Here's my (hidden) solution with NOR ( ':' ) gates only.

NORs only:

Code: Select all
(1r9c6:3r9c6) : ((3r9c6:3r9c6):(3r6c6:3r6c6)) : (3r6c6:3r6c7) : ((3r6c7:3r6c7):(3r4c7:3r4c7)) : (3r4c7:9r4c7) : ((9r4c7:9r4c7):(9r9c7:9r9c7)) : (9r9c7:9r9c8) => -1 r9c8; stte

Interestingly, if NOT gates are also allowed, it's exactly the same as the normal AIC form (as a product of sums) with both ORs and ANDs replaced with NORs.

ORs, ANDs, NOTs:

Code: Select all
(1r9c6|3r9c6) & (-3r9c6|-3r6c6) & (3r6c6|3r6c7) & (-3r6c7|-3r4c7) & (3r4c7|9r4c7) & (-9r4c7|-9r9c7) & (9r9c7|9r9c8) => -1 r9c8; stte

NORs, NOTs:

Code: Select all
(1r9c6:3r9c6) : (-3r9c6:-3r6c6) : (3r6c6:3r6c7) : (-3r6c7:-3r4c7) : (3r4c7:9r4c7) : (-9r4c7:-9r9c7) : (9r9c7:9r9c8) => -1 r9c8; stte

That's probably the simplest boolean form for an AIC! I wouldn't have guessed.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: June 19, 2020

Postby Cenoman » Fri Jun 19, 2020 7:27 pm

Code: Select all
 +-----------------+----------------------+---------------------+
 |  4    8    3    |  1     2      5      |  7      6    9      |
 |  7    5    2    |  6     9      8      |  1      4    3      |
 |  1    6    9    |  4     3      7      |  2      8    5      |
 +-----------------+----------------------+---------------------+
 |  8    2    4    |  39    7      6      |  39     5    1      |
 |  3    7    16   |  259  b145   b124    |  4689*  29   2468*  |
 |  5    9    16   |  8    c14     1234   |  346    7    246    |
 +-----------------+----------------------+---------------------+
 |  9    1    8    |  25    456    24     |  456    3    7      |
 |  6    3    5    |  7    a48-1   9      |  48*    12   248*   |
 |  2    4    7    |  35    1568   13     |  5689   19   68     |
 +-----------------+----------------------+---------------------+

UR(48)r58c79 using externals
(4|8)r8c5 == (4)r5c56 - (4=1)r6c5 => -1 r8c5; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: June 19, 2020

Postby SpAce » Sat Jun 20, 2020 5:09 am

Cenoman wrote:UR(48)r58c79 using externals
(4|8)r8c5 == (4)r5c56 - (4=1)r6c5 => -1 r8c5; ste

Beautiful!
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: June 19, 2020

Postby denis_berthier » Sat Jun 20, 2020 7:41 am

Solved using only the most elementary reversible patterns (and no assumption of uniqueness):
Hidden Text: Show
singles
whip[1]: c8n3{r9 .} ==> r9c7 ≠ 3, r7c7 ≠ 3
whip[1]: r8n2{c9 .} ==> r7c8 ≠ 2
naked-single ==> r7c8 = 3
z-chain-rc[3]: r7c6{n4 n2} - r5c6{n2 n1} - r6c5{n1 .} ==> r6c6 ≠ 4
biv-chain[4]: r4c7{n9 n3} - b5n3{r4c4 r6c6} - r6n2{c6 c9} - r5c8{n2 n9} ==> r5c7 ≠ 9
biv-chain[3]: c7n9{r9 r4} - r4c4{n9 n3} - r9c4{n3 n5} ==> r9c7 ≠ 5
singles ==> r7c7 = 5, r7c4 = 2, r7c6 = 4, r7c5 = 6
biv-chain-rc[3]: r5c6{n1 n2} - r5c8{n2 n9} - r9c8{n9 n1} ==> r9c6 ≠ 1
stte


Or with a slightly longer 2D-chain in rc-space:
Hidden Text: Show
singles
whip[1]: c8n3{r9 .} ==> r9c7 ≠ 3, r7c7 ≠ 3
whip[1]: r8n2{c9 .} ==> r7c8 ≠ 2
naked-single ==> r7c8 = 3
z-chain-rc[3]: r7c6{n4 n2} - r5c6{n2 n1} - r6c5{n1 .} ==> r6c6 ≠ 4
biv-chain-rc[5]: r5c8{n2 n9} - r9c8{n9 n1} - r9c6{n1 n3} - r9c4{n3 n5} - r7c4{n5 n2} ==> r5c4 ≠ 2
singles ==> r7c4 = 2, r7c6 = 4
biv-chain-rc[3]: r5c6{n1 n2} - r5c8{n2 n9} - r9c8{n9 n1} ==> r9c6 ≠ 1
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: June 19, 2020

Postby Sudtyro2 » Sat Jun 20, 2020 8:55 pm

Code: Select all
+--------------+-------------------+------------------+
| 4   8   3    |  1    2      5    |  7      6   9    |
| 7   5   2    |  6    9      8    |  1      4   3    |
| 1   6   9    |  4    3      7    |  2      8   5    |
+--------------+-------------------+------------------+
| 8   2   4    | f39   7      6    |  9-3    5   1    |
| 3   7   16   |  259  145    124  |  4689  c29  2468 |
| 5   9   16   |  8    14    e1234 |  346    7  d246  |
+--------------+-------------------+------------------+
| 9   1   8    |  25   456    24   |  456    3   7    |
| 6   3   5    |  7    148    9    |  48     12  248  |
| 2   4   7    | a3#5  1568  b13   |  5689  b19  68   |
+--------------+-------------------+------------------+

Nothing fishy about the previous amazing solutions, so here's the exception...
Kraken 1-Fish(3)c4\r4 + rfr9c4(#)
(3)r9c4 - (3=19)r9c68 - (9=2)r5c8 - r6c9 = (2-3)r6c6 = (3)r4c4 => -3 r4c7; stte
[Edited to correct chain]

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: June 19, 2020

Postby Ngisa » Mon Jun 22, 2020 11:38 am

Code: Select all
+--------------+---------------------+--------------------+
| 4    8    3  | 1      2       5    | 7       6     9    |
| 7    5    2  | 6      9       8    | 1       4     3    |
| 1    6    9  | 4      3       7    | 2       8     5    |
+--------------+---------------------+--------------------+
| 8    2    4  |d39     7       6    | 39      5     1    |
| 3    7    16 |e259    145     124  | 4689    2-9   2468 |
| 5    9    16 | 8      14     c1234 | 346     7     246  |
+--------------+---------------------+--------------------+
| 9    1    8  | 25     456     24   | 456     3     7    |
| 6    3    5  | 7      148     9    | 48      12    248  |
| 2    4    7  | 35     1568   b13   | 5689   a19    68   |
+--------------+---------------------+--------------------+

(9=1)r9c8 - (1=3)r9c6 - (3)r6c6 = (3-9)r4c4 = (9)r5c4 => - 9r5c8; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012


Return to Puzzles