June 1, 2015

Post puzzles for others to solve here.

June 1, 2015

Postby ArkieTech » Sun May 31, 2015 11:26 pm

Code: Select all
 *-----------*
 |..4|...|...|
 |...|7..|...|
 |.1.|.68|.37|
 |---+---+---|
 |2.6|...|..1|
 |...|821|...|
 |3..|...|9.8|
 |---+---+---|
 |86.|29.|.5.|
 |...|..6|...|
 |...|...|4..|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: June 1, 2015

Postby Leren » Mon Jun 01, 2015 12:28 am

Code: Select all
*---------------------------------------------------------------*
| 567   2357  4      | 1359  135   2359   |  268-5 189   29-5   |
|b56    235   8      | 7     135   2359   | c256   149   249-5  |
|b59    1    b259    | 4     6     8      |ca25    3     7      |
|--------------------+--------------------+---------------------|
| 2     8     6      | 359   3457  3579   |  7-5   47    1      |
| 4579  4579  59     | 8     2     1      |  3     467   456    |
| 3     457   1      | 6     457   57     |  9     2     8      |
|--------------------+--------------------+---------------------|
| 8     6     7      | 2     9     4      |  1     5     3      |
| 1459  2459  2359   | 135   13578 6      |  278   789   29     |
| 159   259   2359   | 135   13578 357    |  4     6789  269    |
*---------------------------------------------------------------*

ALS XY Wing: (5=2) r3c7 - (2=6) r2c1, r3c13 - (6=5) r23c7 => - 5 r1c79, r2c9, r4c7; lclste

or

Code: Select all
*---------------------------------------------------------------*
| 567   2357  4      | 1359  135   2359   |  2568  189   259    |
|b56    235   8      | 7     135   2359   | c256   149   2459   |
|b59    1    b259    | 4     6     8      |ca25    3     7      |
|--------------------+--------------------+---------------------|
| 2     8     6      | 359   345-7 359-7  |ca57    4-7   1      |
| 4579  4579  59     | 8     2     1      |  3     46-7  456    |
| 3     457   1      | 6     457   57     |  9     2     8      |
|--------------------+--------------------+---------------------|
| 8     6     7      | 2     9     4      |  1     5     3      |
| 1459  2459  2359   | 135   13578 6      |  28-7  789   29     |
| 159   259   2359   | 135   13578 357    |  4     6789  269    |
*---------------------------------------------------------------*

ALS XY Wing: (7=2) r34c7 - (2=6) r2c1, r3c13 - (6=7) r234c7 => - 7 r4c568, r5c8, r8c7; lclste

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: June 1, 2015

Postby Marty R. » Mon Jun 01, 2015 1:37 am

Code: Select all
+----------------+-----------------+----------------+
| 567  2357 4    | 1359 135   2359 | 2568 189  259  |
| 56   235  8    | 7    135   2359 | 256  149  2459 |
| 59   1    259  | 4    6     8    | 25   3    7    |
+----------------+-----------------+----------------+
| 2    8    6    | 359  3457  3579 | 57   47   1    |
| 4579 4579 59   | 8    2     1    | 3    467  456  |
| 3    457  1    | 6    457   57   | 9    2    8    |
+----------------+-----------------+----------------+
| 8    6    7    | 2    9     4    | 1    5    3    |
| 1459 2459 2359 | 135  13578 6    | 278  789  29   |
| 159  259  2359 | 135  13578 357  | 4    6789 269  |
+----------------+-----------------+----------------+

Play this puzzle online at the Daily Sudoku site

DP (59) r35c13. Venturing into uncharted waters with internals, 2 in r3c3 and externals, 5 in r5c9: 5r5c9=2r3c3-(2=5) r3c7=>r12c9,r4c7<>5
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: June 1, 2015

Postby pjb » Mon Jun 01, 2015 3:23 am

Code: Select all
 567     2357    4      | 1359   135    2359   | 2568   189    259   
c56      235     8      | 7      135    2359   |d256    149    2459   
c59      1      c259    | 4      6      8      |bd25    3      7     
------------------------+----------------------+---------------------
 2       8       6      | 359    3457   3579   |a57     47     1     
 4579    4579    59     | 8      2      1      | 3      467    456   
 3       457     1      | 6      457    57     | 9      2      8     
------------------------+----------------------+---------------------
 8       6       7      | 2      9      4      | 1      5      3     
 1459    2459    2359   | 135    13578  6      | 278    789    29     
 159     259     2359   | 135    13578  357    | 4      6789   269   

I could only come up with a slight variation on Leren's:

(7=5)r4c7 - (5=2)r3c7 - (2=6)r2c1,r3c13 - (6=5)r23c7 => -5 r4c7; lclste

Phil

PS Marty: Apologies if I'm missing something obvious, but any chance you could give more detail on this move: 5r5c9=2r3c3?
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: June 1, 2015

Postby SteveG48 » Mon Jun 01, 2015 3:30 am

Code: Select all
 *---------------------------------------------------------------------*
 |  67-5   2357   4      | 1359   135    2359   | 2568   189    259    |
 |  6-5    235    8      | 7      135    2359   | 256    149    2459   |
 |ai59     1     a259    | 4      6      8      |b25     3      7      |
 *-----------------------+----------------------+----------------------|
 |  2      8      6      | 359    3457   3579   |c57     47     1      |
 | e4579  e4579  e59     | 8      2      1      | 3      467   d456    |
 |  3     f457    1      | 6      457   g57     | 9      2      8      |
 *-----------------------+----------------------+----------------------|
 |  8      6      7      | 2      9      4      | 1      5      3      |
 |  1459   2459   2359   | 135    13578  6      | 278    789    29     |
 | i159    259   h2359   |h135    13578 h357    | 4      6789   269    |
 *---------------------------------------------------------------------*

(5=92*)r3c13 - (2=5)r3c7 - r4c7 = r5c9 - (5)r5c123 = r6c2 - (5=7)r6c6 - (7*2*9=351)r9c346 - (1=59)r39c1 => -5 r12c1 ; stte
                                                   = (9*)r5c3           

Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: June 1, 2015

Postby Marty R. » Mon Jun 01, 2015 3:50 am

pjb wrote:
Code: Select all
 567     2357    4      | 1359   135    2359   | 2568   189    259   
c56      235     8      | 7      135    2359   |d256    149    2459   
c59      1      c259    | 4      6      8      |bd25    3      7     
------------------------+----------------------+---------------------
 2       8       6      | 359    3457   3579   |a57     47     1     
 4579    4579    59     | 8      2      1      | 3      467    456   
 3       457     1      | 6      457    57     | 9      2      8     
------------------------+----------------------+---------------------
 8       6       7      | 2      9      4      | 1      5      3     
 1459    2459    2359   | 135    13578  6      | 278    789    29     
 159     259     2359   | 135    13578  357    | 4      6789   269   

I could only come up with a slight variation on Leren's:

(7=5)r4c7 - (5=2)r3c7 - (2=6)r2c1,r3c13 - (6=5)r23c7 => -5 r4c7; lclste

Phil

PS Marty: Apologies if I'm missing something obvious, but any chance you could give more detail on this move: 5r5c9=2r3c3?


Phil,

Anything I try can always go wrong. As the internal, the 2 in r3c3 kills the DP. As an external, the 5 in r5c9 kills it as well, thus 5=2 is the way I saw it. In the meantime, anticipating a question or challenge, I asked the resident expert on externals.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: June 1, 2015

Postby sultan vinegar » Mon Jun 01, 2015 11:11 am

Hi Marty,

For DP (59) r35c13, there are three ways to prevent it:

Code: Select all
 567     2357    4      | 1359   135    2359   | 2568   189    259   
 56      235     8      | 7      135    2359   | 256    149    2459   
(59)     1       2(59)  | 4      6      8      | 25     3      7     
------------------------+----------------------+---------------------
 2       8       6      | 359    3457   3579   | 57     47     1     
 47(59)  4579    (59)   | 8      2      1      | 3      467    456   
 3       457     1      | 6      457    57     | 9      2      8     
------------------------+----------------------+---------------------
 8       6       7      | 2      9      4      | 1      5      3     
 1459    2459    2359   | 135    13578  6      | 278    789    29     
 159     259     2359   | 135    13578  357    | 4      6789   269   


One of (2)r3c3, (4)r5c1, (7)r5c1 must be true. No internals/externals are necessary! I can't find any eliminations with this DP.
sultan vinegar
 
Posts: 81
Joined: 27 August 2013

Re: June 1, 2015

Postby JC Van Hay » Mon Jun 01, 2015 2:22 pm

DP(53)r35c13 or r35c13 -> +7r4c7; lclste or ...
Code: Select all
+-----------------------+-------------------+---------------------+
| 5(67)   5(237)  4     | 1359  135    2359 | 2-5(68)  189   259  |
| 56      5(23)   8     | 7     135    2359 | 256      149   2459 |
| 59      1       59(2) | 4     6      8    | (25)     3     7    |
+-----------------------+-------------------+---------------------+
| 2       8       6     | 359   3457   3579 | -5(7)    47    1    |
| 459(7)  459(7)  59    | 8     2      1    | 3        46-7  456  |
| 3       45(7)   1     | 6     457    57   | 9        2     8    |
+-----------------------+-------------------+---------------------+
| 8       6       7     | 2     9      4    | 1        5     3    |
| 1459    2459    2359  | 135   13578  6    | 2(78)    789   29   |
| 159     259     2359  | 135   13578  357  | 4        6789  269  |
+-----------------------+-------------------+---------------------+
7r4c7=(7-8)r8c7=(8-6)r1c7=(6-7)r1c1=7r5c1-7r56c2=HP(73-2)r12c2=2r3c3-(2=5)r3c7 :=> -7r5c8, -5r14c7; 11 Singles; HP(78)r9c58; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: June 1, 2015

Postby daj95376 » Mon Jun 01, 2015 4:15 pm

Marty, my solver finds only one elimination associated with your UR.

Code: Select all
 +-----------------------------------------------------------------------+
 |  567    2357   4      |  1359   135    2359   |  2568   189    259    |
 |  56     235    8      |  7      135    2359   |  256    149    2459   |
 | *59     1     *59+2   |  4      6      8      |  25     3      7      |
 |-----------------------+-----------------------+-----------------------|
 |  2      8      6      |  359    3457   3579   |  57     47     1      |
 | *59+47  4579  *59     |  8      2      1      |  3      467    456    |
 |  3      457    1      |  6      457    57     |  9      2      8      |
 |-----------------------+-----------------------+-----------------------|
 |  8      6      7      |  2      9      4      |  1      5      3      |
 |  1459   2459   2359   |  135    13578  6      |  278    789    29     |
 |  159    259    2359   |  135    13578  357    |  4      6789   269    |
 +-----------------------------------------------------------------------+
 # 105 eliminations remain

 9r5c1, 5r5c3 + 5r3c1, 9r3c3; DP  =>  -9 r5c1

However, while trying to decipher JC's DP deduction, I ran across some logic that my solver doesn't use.

Code: Select all
(4+7=59)r5c13 - 5r5c9 = 5r4c7 - (5=2)r3c7 - (2=59)r3c13; DP  =>  -59 r5c1

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: June 1, 2015

Postby Marty R. » Mon Jun 01, 2015 4:23 pm

sultan vinegar wrote:Hi Marty,

For DP (59) r35c13, there are three ways to prevent it:

Code: Select all
 567     2357    4      | 1359   135    2359   | 2568   189    259   
 56      235     8      | 7      135    2359   | 256    149    2459   
(59)     1       2(59)  | 4      6      8      | 25     3      7     
------------------------+----------------------+---------------------
 2       8       6      | 359    3457   3579   | 57     47     1     
 47(59)  4579    (59)   | 8      2      1      | 3      467    456   
 3       457     1      | 6      457    57     | 9      2      8     
------------------------+----------------------+---------------------
 8       6       7      | 2      9      4      | 1      5      3     
 1459    2459    2359   | 135    13578  6      | 278    789    29     
 159     259     2359   | 135    13578  357    | 4      6789   269   


One of (2)r3c3, (4)r5c1, (7)r5c1 must be true. No internals/externals are necessary! I can't find any eliminations with this DP.


SV,

Thanks, your comments are always appreciated and respected. Obviously your first statement is inarguable, that a 2, 4 or 7 kill the DP. However, that is strictly using internals. To the best of my knowledge, a mix of internals and externals can be used, which I decided to do with this puzzle. Using the external 5 obviates the need for the 4 and 7 and combined with the internal 2 results in an extremely simple solution of the type that I see only seldomly.
When it comes to sudoku theory, I usually leave those discussions to the experts. After thinking about this one, I can't see anything wrong, and if there is, I'd like to see the details, even if if I can't say my confidence factor is 100%.

Marty
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: June 1, 2015

Postby daj95376 » Mon Jun 01, 2015 4:39 pm

Marty R. wrote:
Code: Select all
+----------------+-----------------+----------------+
| 567  2357 4    | 1359 135   2359 | 2568 189  259  |
| 56   235  8    | 7    135   2359 | 256  149  2459 |
| 59   1    259  | 4    6     8    | 25   3    7    |
+----------------+-----------------+----------------+
| 2    8    6    | 359  3457  3579 | 57   47   1    |
| 4579 4579 59   | 8    2     1    | 3    467  456  |
| 3    457  1    | 6    457   57   | 9    2    8    |
+----------------+-----------------+----------------+
| 8    6    7    | 2    9     4    | 1    5    3    |
| 1459 2459 2359 | 135  13578 6    | 278  789  29   |
| 159  259  2359 | 135  13578 357  | 4    6789 269  |
+----------------+-----------------+----------------+


DP (59) r35c13. Venturing into uncharted waters with internals, 2 in r3c3 and externals, 5 in r5c9: 5r5c9=2r3c3-(2=5) r3c7=>r12c9,r4c7<>5

Okay, tackling your logic. 2r3c3 is an internal that blocks the DP. However, 5r5c9 is not the only external <5> in [r5] that blocks the DP. There's also 5r5c2. Thus, you can't form the SL 5r5c9=2r3c3.

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: June 1, 2015

Postby David P Bird » Mon Jun 01, 2015 7:17 pm

Code: Select all
+----------------+-----------------+----------------+
| 567  2357 4    | 1359 135   2359 | 2568 189  259  |
| 56   235  8    | 7    135   2359 | 256  149  2459 |
| 59   1    259  | 4    6     8    | 25   3    7    |
+----------------+-----------------+----------------+
| 2    8    6    | 359  3457  3579 | 57   47   1    |
| 4579 4579 59   | 8    2     1    | 3    467  456  |
| 3    457  1    | 6    457   57   | 9    2    8    |
+----------------+-----------------+----------------+
| 8    6    7    | 2    9     4    | 1    5    3    |
| 1459 2459 2359 | 135  13578 6    | 278  789  29   |
| 159  259  2359 | 135  13578 357  | 4    6789 269  |
+----------------+-----------------+----------------+
Marty, using only AICs
(4|7)r5c1 = (59)r5c13 -[UR]- (59)r3c13 = (5)r3c7 - (5)r4c7 = (5)r5c9 => r5c1 <> 5

(4|7)r5c1 (either 4 or 7) (internal) prevents (59)r5c13 and (5)r3c7 (external) prevents (59)r3c13 and leads to (5)r5c9
either way r5c1 <> 5

The chain can be extended to
(4|7a)r5c1 = (59)r5c13 -[UR]- (59)r3c13 = (5)r3c7 - (5)r4c7 = (5b)r5c9 - (5=9c)r5c3 => [ab] r5c1 <>5, [ac] r5c1 <> 9
This doesn't crack the puzzle though!

(59)r5c13 -[UR]- (59)r3c13 is a way to notate that two different pairs of cells in a UR pattern can't hold the same pair of digits. I find that writing it like that makes checking my work easier.

In your original notation you were trying to use (5)r5c9 as an external disruptor but you must use all the (5)'s and (9)'s in the same house which includes (5) & (9) in r5c2 as well (just one of these three would have to be true).
So your link should have been (59)r5c13 = (5|9)r5c29 which isn't very useful.

DPB
David P Bird
2010 Supporter
 
Posts: 1043
Joined: 16 September 2008
Location: Middle England

Re: June 1, 2015

Postby Marty R. » Mon Jun 01, 2015 8:09 pm

Danny and David,

Thank you, mea culpa. I never noticed the extra internals in r5. I thought my solution was a little too easy. :oops: I'll look a little more carefully before I try my next external.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: June 1, 2015

Postby sultan vinegar » Tue Jun 02, 2015 10:43 am

Hi Marty,

Sorry, I see what you were trying to do now. I don't tend to consider 'externals' as most of the time there will be more of them than 'internals' and hence more work to add to the chain. The same information is always available in the 'internals' anyway, so I suggest if you are more comfortable with the 'internal' logic then just stick to that.

I.e. using 'internals' for DPBs chain you get:

(47)r5c1 = (2)r3c3[AUR59:r35c13] - (2=5)r3c7 - (5)r4c7 = (NP57)r5c39 => r5c1 <> 5,9.

David P Bird wrote:So your link should have been (59)r5c13 = (5|9)r5c29 which isn't very useful.


DPB, given that I haven't wound you up in a while I can't resist pointing out the following chain :D

Hidden Text: Show
(NP59)r5c39 = (5)r4c7 - (5=2)r3c7 - (2)r3c3 = (QNP59)r5c239[AUR59:r35c13] => r5c1 <> 5,9.


Too bad it doesn't crack the puzzle.
sultan vinegar
 
Posts: 81
Joined: 27 August 2013

Re: June 1, 2015

Postby David P Bird » Tue Jun 02, 2015 11:11 am

sultan vinegar wrote:DPB, given that I haven't wound you up in a while I can't resist pointing out the following chain :D
Hidden Text: Show
(NP59)r5c39 = (5)r4c7 - (5=2)r3c7 - (2)r3c3 = (QNP59)r5c239[AUR59:r35c13] => r5c1 <> 5,9.

SV I refuse to rise to that dig, except to say that I prefer to call a spade a spade not a MEMD (Manual Earth Moving Device). 8-)
David P Bird
2010 Supporter
 
Posts: 1043
Joined: 16 September 2008
Location: Middle England

Next

Return to Puzzles