July 23, 2016

Post puzzles for others to solve here.

July 23, 2016

Postby ArkieTech » Fri Jul 22, 2016 11:00 pm

Code: Select all
 *-----------*
 |..8|...|7..|
 |.5.|9.4|.2.|
 |4..|...|..1|
 |---+---+---|
 |.2.|4.9|.1.|
 |...|...|...|
 |.1.|6.3|.7.|
 |---+---+---|
 |5..|...|..3|
 |.3.|2.8|.9.|
 |..6|...|4..|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: July 23, 2016

Postby Leren » Sat Jul 23, 2016 3:09 am

Code: Select all
*--------------------------------------------------------------------------------*
| 12369   69      8        | 135     12356   1256     | 7       3456    4569     |
| 1367    5       137      | 9       13678   4        | 368     2       68       |
| 4       679     2379     | 3578    235678  2567     | 35689   3568    1        |
|--------------------------+--------------------------+--------------------------|
| 3678    2       357      | 4       578     9        | 3568    1       568      |
| 36789   46789   34579    | 1578    12578   1257     | 235689  34568   245689   |
| 89      1       459      | 6       258     3        | 2589    7       24589    |
|--------------------------+--------------------------+--------------------------|
| 5       4789    12479    | 17      14679   167      | 1268    68      3        |
|a17      3       147      | 2       14567   8        | 156     9      b567      |
|d2789-1  789     6        | 1357    13579   157      | 4       58     c2578     |
*--------------------------------------------------------------------------------*

(1=7) r8c1 - r8c9 = (7-2) r9c9 = (2) r9c1 => - 1 r9c1; lclste

Leren
Last edited by Leren on Sat Jul 23, 2016 3:21 am, edited 2 times in total.
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: July 23, 2016

Postby pjb » Sat Jul 23, 2016 3:12 am

Code: Select all
 12369   69      8      | 135    12356  1256   | 7      3456   4569   
 1367    5       137    | 9      13678  4      | 368    2      68     
 4       679     2379   | 3578   235678 2567   | 35689  3568   1     
------------------------+----------------------+---------------------
 3678    2       357    | 4      578    9      | 3568   1      568   
 36789   46789   34579  | 1578   12578  1257   | 235689 34568  245689
 89      1       459    | 6      258    3      | 2589   7      24589 
------------------------+----------------------+---------------------
 5       4789    12479  | 17     14679  167    | 1268   68     3     
a17      3       147    | 2      14567  8      | 156    9     b567   
d2789-1  789     6      | 1357   13579  157    | 4      58    c2578   

(1=7)r8c1 - r8c9 = (7-2)r9c9 = (2-1)r9c1 => -1 r9c1; lclste
Yet again preempted by a couple of minutes, will try again later!
How about:
Code: Select all
(1)r7c7 = r8c7 - (1=7)r8c1 - r8c9 = (7-2)r9c9 = (2-1)r9c1 = r7c3 => -1 r7c456; stte
            \
           r8c13

Phil
Last edited by pjb on Sun Jul 24, 2016 1:10 am, edited 1 time in total.
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: July 23, 2016

Postby Ngisa » Sat Jul 23, 2016 11:47 am

Code: Select all
+-------------------+------------------+---------------------+
| 12369 69    8     | 135  12356  1256 | 7      3456  4569   |
| 1367  5     137   | 9    13678  4    | 368    2     68     |
| 4     679   2379  | 3578 235678 2567 | 35689  3568  1      |
+-------------------+------------------+---------------------+
| 3678  2     357   | 4    578    9    | 3568   1     568    |
| 36789 46789 34579 | 1578 12578  1257 | 235689 34568 245689 |
| 89    1     459   | 6    258    3    | 2589   7     24589  |
+-------------------+------------------+---------------------+
| 5     4789  12479 | 17   14679  167  | c1268   68    3      |
| a17    3     a147   | 2    14567  8    | b156    9     e567    |
| 12789 789   6     | 1357 13579  157  | 4      58    d2578   |
+-------------------+------------------+---------------------+

(4=71)r8c13 - (1)r8c7 = (1-2)r7c7 = (2-7)r9c9 = (7)r8c9, conflict, 1 remains as a lone candidate in r8c13, so, r8c3=4; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: July 23, 2016

Postby bat999 » Sat Jul 23, 2016 12:08 pm

Code: Select all
.------------------------.-------------------------.-----------------------.
|  12369    69     8     |  135    12356    1256 | 7        3456   b4569   |
|  1367     5      137   |  9      13678    4    | 368      2      b68     |
|  4        679    2379  |  3578   235678   2567 | 35689    3568    1      |
:------------------------+-----------------------+-------------------------:
|  3678     2      357   |  4      578      9    | 3568     1      b568    |
|  36789    46789  34579 |  1578   12578    1257 | 235689   34568  b245689 |
|  89       1      459   |  6      258      3    | 2589     7      b24589  |
:------------------------+-----------------------+-------------------------:
|  5        4789   12479 |  17     14679    167  | 1268     68      3      |
| c17       3      147   |  2      4567-1   8    | 156      9      b567    |
|  2789-1  a789    6     | a1357  a13579   a157  | 4       a58     a2578   |
'------------------------'-----------------------'-------------------------'
(1=2)r9c245689 - (2=7)r124568c9 - (7=1)r8c1 => -1 r8c5,r9c1; lclste
8-)
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: July 23, 2016

Postby SteveG48 » Sat Jul 23, 2016 3:03 pm

Ngisa wrote:(4=71)r8c13 - (1)r8c7 = (1-2)r7c7 = (2-7)r9c9 = (7)r8c9, conflict, 1 remains as a lone candidate in r8c13, so, r8c3=4; stte

Clement


Clement, I don't see that r8c3=4 solves the puzzle.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: July 23, 2016

Postby Ngisa » Sat Jul 23, 2016 10:01 pm

SteveG48 wrote:
Ngisa wrote:(4=71)r8c13 - (1)r8c7 = (1-2)r7c7 = (2-7)r9c9 = (7)r8c9, conflict, 1 remains as a lone candidate in r8c13, so, r8c3=4; stte

Clement


Clement, I don't see that r8c3=4 solves the puzzle.
O.K
The initial assumption 17 in r8c13 eliminates the 7 in r8c9. However, the chain shows it must be 7 which eliminates it in r8c13. I am sorry for not mentioning that in my conclusion.
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: July 23, 2016

Postby SteveG48 » Sat Jul 23, 2016 10:22 pm

Hi, Clement. I understood your chain. However, assigning 4 to r8c3 doesn't seem to reduce the puzzle to singles, or even to basics.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida


Return to Puzzles