July 18, 2014

Post puzzles for others to solve here.

July 18, 2014

Postby ArkieTech » Thu Jul 17, 2014 11:23 pm

Code: Select all
 *-----------*
 |...|..4|83.|
 |...|.9.|5.7|
 |..2|.7.|.64|
 |---+---+---|
 |.9.|85.|..1|
 |...|..1|79.|
 |1..|..9|...|
 |---+---+---|
 |56.|...|3..|
 |2.9|..3|...|
 |.71|6..|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: July 18, 2014

Postby Leren » Thu Jul 17, 2014 11:43 pm

Code: Select all
*--------------------------------------------------------------*
|e679   15    567    | 125   26    4      | 8     3    d29     |
| 468   13    468    | 123   9     68     | 5    c12    7      |
| 89    1358  2      | 135   7     58     | 19    6     4      |
|--------------------+--------------------+--------------------|
|f467   9     3      | 8     5     6-7    | 246   24    1      |
| 468   2458  4568   | 24    236   1      | 7     9     358    |
| 1     2458  45678  | 247   236   9      | 46    58    358    |
|--------------------+--------------------+--------------------|
| 5     6     48     | 9     148  a27     | 3    b12478 28     |
| 2     48    9      | 57    148   3      | 14    57    6      |
| 3     7     1      | 6     48    25     | 249   2458  2589   |
*--------------------------------------------------------------*

(7) r7c6 = (7-1) r7c8 = (1-2) r2c8 = (2-9) r1c9 = (9-7) r1c1 = (7) r4c1 => - 7 r4c6; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: July 18, 2014

Postby SteveG48 » Fri Jul 18, 2014 12:47 am

Code: Select all
 *--------------------------------------------------------------------*
 | 679    15     567    | 125    6-2    4      | 8      3     e29     |
 | 468    13     468    | 123    9      68     | 5      12     7      |
 | 89     1358   2      | 135    7      58     |e19     6      4      |
 *----------------------+----------------------+----------------------|
 | 467    9      3      | 8      5     a67     | 246    24     1      |
 | 468    2458   4568   | 24    a236    1      | 7      9      358    |
 | 1      2458   45678  | 247   a236    9      | 46     58     358    |
 *----------------------+----------------------+----------------------|
 | 5      6     b48     | 9     b148   b27     | 3      12478 b28     |
 | 2      48     9      | 57    c148    3      |d14     57     6      |
 | 3      7      1      | 6      48     25     | 249    2458   2589   |
 *--------------------------------------------------------------------*


(2=7)r4c6,r56c5 - (7=1)r7c3569 - r8c5 = r8c7 - (1=2)r1c9,r3c7 => -2 r1c5 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: July 18, 2014

Postby tlanglet » Fri Jul 18, 2014 1:41 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 679   w15     567    | 125    26     4      | 8      3      29     |
 | 468   w13     468    | 123    9     a68     | 5      12     7      |
 |z89    w1358   2      | 135    7      58     |z19     6      4      |
 |----------------------+----------------------+----------------------|
 | 467    9      3      | 8      5     b67     | 246    24     1      |
 | 468  *w2458   4568   |*24     236    1      | 7      9      358    |
 | 1    *w2458   45678  |*247    236    9      | 46     58     358    |
 |----------------------+----------------------+----------------------|
 | 5      6      48     | 9      148    27     | 3      12478  28     |
 | 2     x48     9      | 57     148    3      |y14     57     6      |
 | 3      7      1      | 6      48     25     | 249    2458   2589   |
 *--------------------------------------------------------------------*

I have another notation issue/problem/question. Note the AUR(24)r56c24 with internal inferences (58)r56c2 pseudocell and 7r6c4. My specific difficulty is notating the combination of the (58)r56c2 pseudocell with (1358)r123c2 to form a locked set that interacts with the bivalue (48)r8c2.

Consider the following where the logic noted "a,b" precedes the AUR(24) and the logic noted "w,x,y,z" is after the AUR(24):
(8=6)r2c6-(6=7)r4c6-AUR(24)r56c24[7r6c4=(58)r56c2]=ls(1358)r12356c2-(8=4)r8c2-(4=1)r8c7-(1=98)r3c71 => r3c6<>8

Here, I explicitly state the AUR inferences but used a second strong link, "=", to show that a ls(1358)r12356c2 results.

Ted

P.S. This solves the puzzle
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: July 18, 2014

Postby ArkieTech » Fri Jul 18, 2014 2:41 pm

tlanglet wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 679   w15     567    | 125    26     4      | 8      3      29     |
 | 468   w13     468    | 123    9     a68     | 5      12     7      |
 |z89    w1358   2      | 135    7      58     |z19     6      4      |
 |----------------------+----------------------+----------------------|
 | 467    9      3      | 8      5     b67     | 246    24     1      |
 | 468  *w2458   4568   |*24     236    1      | 7      9      358    |
 | 1    *w2458   45678  |*247    236    9      | 46     58     358    |
 |----------------------+----------------------+----------------------|
 | 5      6      48     | 9      148    27     | 3      12478  28     |
 | 2     x48     9      | 57     148    3      |y14     57     6      |
 | 3      7      1      | 6      48     25     | 249    2458   2589   |
 *--------------------------------------------------------------------*

I have another notation issue/problem/question. Note the AUR(24)r56c24 with internal inferences (58)r56c2 pseudocell and 7r6c4. My specific difficulty is notating the combination of the (58)r56c2 pseudocell with (1358)r123c2 to form a locked set that interacts with the bivalue (48)r8c2.

Consider the following where the logic noted "a,b" precedes the AUR(24) and the logic noted "w,x,y,z" is after the AUR(24):
(8=6)r2c6-(6=7)r4c6-AUR(24)r56c24[7r6c4=(58)r56c2]=ls(1358)r12356c2-(8=4)r8c2-(4=1)r8c7-(1=98)r3c71 => r3c6<>8

Here, I explicitly state the AUR inferences but used a second strong link, "=", to show that a ls(1358)r12356c2 results.

Ted

P.S. This solves the puzzle


Code: Select all
(8=6)r2c6-(6=7)r4c6-(7=58)ur:24r56c24
                      =(2-4)r56c2=4r8c2-(4=1)r8c7-(1=98)r3c71 => -8r3c6
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: July 18, 2014

Postby daj95376 » Fri Jul 18, 2014 5:47 pm

_

Ted wrote:(8=6)r2c6-(6=7)r4c6-AUR(24)r56c24[7r6c4=(58)r56c2]=ls(1358)r12356c2-(8=4)r8c2-(4=1)r8c7-(1=98)r3c71 => r3c6<>8


One possible alternative: declare the UR and SL prior to forming the chain and declaring the LS

AUR(24)r56c24 w/internal SL 7r6c4=UR=58r56c2

(8=6)r2c6-(6=7)r4c6-7r6c4=UR=ls(5813)r56123c2-(8=4)r8c2-(4=1)r8c7-(1=98)r3c71 => r3c6<>8


Another option: UR and SL still declared prior to forming the chain

AUR(24)r56c24 w/external SL 2r56c5[b5]=UR=4r8c2[c2]

(8=6)r2c6-(6=7)r4c6-(7=24)r56c4-2r56c5=UR=4r8c2-(4=1)r8c7-(1=98)r3c71 => r3c6<>8

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: July 18, 2014

Postby Marty R. » Sat Jul 19, 2014 1:13 am

Code: Select all
+----------------+------------+----------------+
| 679 15   567   | 125 26  4  | 8   3     29   |
| 468 13   468   | 123 9   68 | 5   12    7    |
| 89  1358 2     | 135 7   58 | 19  6     4    |
+----------------+------------+----------------+
| 467 9    3     | 8   5   67 | 246 24    1    |
| 468 2458 4568  | 24  236 1  | 7   9     358  |
| 1   2458 45678 | 247 236 9  | 46  58    358  |
+----------------+------------+----------------+
| 5   6    48    | 9   148 27 | 3   12478 28   |
| 2   48   9     | 57  148 3  | 14  57    6    |
| 3   7    1     | 6   48  25 | 249 2458  2589 |
+----------------+------------+----------------+

Play this puzzle online at the Daily Sudoku site

7r7c6=(7-1)r7c8=1r2c8-(198=5)r3c716-(5=2)r9c6-(2=7)r7c6=>r7c6=7
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: July 18, 2014

Postby tlanglet » Sat Jul 19, 2014 2:18 am

Thanks for the suggested alternatives...............

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010


Return to Puzzles