July 11, 2015

Post puzzles for others to solve here.

July 11, 2015

Postby ArkieTech » Fri Jul 10, 2015 11:06 pm

Code: Select all
 *-----------*
 |...|...|..8|
 |95.|6..|...|
 |..3|.1.|96.|
 |---+---+---|
 |8.4|.2.|...|
 |..5|9.7|6..|
 |...|.3.|8.1|
 |---+---+---|
 |.82|.9.|1..|
 |...|..4|.29|
 |4..|...|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: July 11, 2015

Postby Leren » Sat Jul 11, 2015 12:00 am

Code: Select all
*--------------------------------------------------------------------------------*
| 1       267     67       |a2357   A457     9        | 24     b357a    8        |
| 9       5       8        | 6     Cd4-7e    23       | 24      1      c37       |
| 27      4       3        | 257     1       8        | 9       6       57       |
|--------------------------+--------------------------+--------------------------|
| 8       679     4        | 15      2       156      | 57      3579    357      |
| 3       1       5        | 9       8       7        | 6       4       2        |
| 27      2679    679      | 4       3       56       | 8       579     1        |
|--------------------------+--------------------------+--------------------------|
| 6       8       2        | 357c    9       35c      | 1       57b     4        |
| 5       37      1        | 8       6       4        | 37      2       9        |
| 4       379     79       | 12     B57d     12       | 357     8       6        |
*--------------------------------------------------------------------------------*

Kraken Row 1 Digit 5 :

5 r1c4 - 3 r1c4 = r1c8 - (3=7) r2c9 - 7 r2c5;

5 r1c5 - (5=7) r9c5                 - 7 r2c5;

5 r1c8 - r7c8 = r7c46 - (5=7)r9c5   - 7 r2c5; => - 7 r2c5; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: July 11, 2015

Postby SteveG48 » Sat Jul 11, 2015 1:00 am

Code: Select all
 *------------------------------------------------------------*
 | 1     267   67    | 2357  457   9     | 24    357    8     |
 | 9     5     8     | 6    d47   d23    |d24    1      37    |
 | 27    4     3     |e257   1     8     | 9     6     f57    |
 *-------------------+-------------------+--------------------|
 | 8     679   4     |a15    2    a156   | 7-5   379-5 g357   |
 | 3     1     5     | 9     8     7     | 6     4      2     |
 | 27    2679  679   | 4     3    b56    | 8     579    1     |
 *-------------------+-------------------+--------------------|
 | 6     8     2     | 357   9    c35    | 1     57     4     |
 | 5     37    1     | 8     6     4     | 37    2      9     |
 | 4     379   79    | 12    57    12    | 357   8      6     |
 *------------------------------------------------------------*


5r4c46 = r6c6 - (5=3)r7c6 - (3=427)r2c567 - (27=5)r3c4 - r3c9 = 5r4c9 => -5 r4c78 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: July 11, 2015

Postby pjb » Sat Jul 11, 2015 3:22 am

Code: Select all
 1       267     67     |d2357  e457    9      | 24     357    8     
 9       5       8      | 6      47     23     | 24     1      37     
 27      4       3      | 257    1      8      | 9      6      57     
------------------------+----------------------+---------------------
 8       679     4      | 15     2      156    | 57     3579   357   
 3       1       5      | 9      8      7      | 6      4      2     
 27      2679    679    | 4      3      56     | 8      579    1     
------------------------+----------------------+---------------------
 6       8       2      |c357    9      35     | 1     b57     4     
 5       37      1      | 8      6      4      | 37     2      9     
 4       379     79     | 12     7-5    12     |a357    8      6     

(5)r9c7 = (5-7)r7c8 = (7-3)r7c4 = (3-5)r1c4 = r1c5 => -5 r9c5; stte
                 \
                r1c8


Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: July 11, 2015

Postby Sudtyro2 » Sat Jul 11, 2015 3:51 pm

Code: Select all
 *------------------------------------------------------------*
 | 1     267   67    | 2357  457   9     | 24   d357    8     |
 | 9     5     8     | 6     47   a23    | 24    1    ab37    |
 | 27    4     3     |c257   1     8     | 9     6     b57    |
 *-------------------+-------------------+--------------------|
 | 8     679   4     | 15    2     156   | 57    3579   357   |
 | 3     1     5     | 9     8     7     | 6     4      2     |
 | 27    2679  679   | 4     3     56    | 8     579    1     |
 *-------------------+-------------------+--------------------|
 | 6     8     2     | 35-7  9     35    | 1     57     4     |
 | 5     37    1     | 8     6     4     | 37    2      9     |
 | 4     379   79    | 12    57    12    | 357   8      6     |
 *------------------------------------------------------------*

The above grid is suitable for the use of MJ's CoALS rule on overlapping ALS a(237)r2c69 and b(357)r23c9. Digits in the overlap cell are the 3s and 7s. Digits in the non-overlap cells are the 2 and the 5, and both can see cell c(257)r3c4.

The CoALS rule says that there is a strong link between (all occurrences of) the AND'd digits in the overlap cell and the AND'd digits in the non-overlap cells. So, along with the cell marked c, one can form the following chain segment.
Code: Select all
[ab(73=25)r2c69,r23c9 – c(2|5=7)r3c4] <=> [7r23c9 = 7r3c4]
Either bracketed term can then be applied to Kraken cell d(357)r1c8 for an easy elimination.

Code: Select all
7r1c8 - [7r23c9 = 7r3c4] – 7r7c4; stte
 ||                      /
3r1c8 – r1c4 = r7c4 -----
 ||                    /
5r1c8 – (5=7)r7c8 ----

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: July 11, 2015

Postby daj95376 » Sat Jul 11, 2015 11:40 pm

Sudtyro2 wrote:
Code: Select all
 *------------------------------------------------------------*
 | 1     267   67    | 2357  457   9     | 24   d357    8     |
 | 9     5     8     | 6     47   a23    | 24    1    ab37    |
 | 27    4     3     |c257   1     8     | 9     6     b57    |
 *-------------------+-------------------+--------------------|
 | 8     679   4     | 15    2     156   | 57    3579   357   |
 | 3     1     5     | 9     8     7     | 6     4      2     |
 | 27    2679  679   | 4     3     56    | 8     579    1     |
 *-------------------+-------------------+--------------------|
 | 6     8     2     | 35-7  9     35    | 1     57     4     |
 | 5     37    1     | 8     6     4     | 37    2      9     |
 | 4     379   79    | 12    57    12    | 357   8      6     |
 *------------------------------------------------------------*

The above grid is suitable for the use of MJ's CoALS rule on overlapping ALS a(237)r2c69 and b(357)r23c9. Digits in the overlap cell are the 3s and 7s. Digits in the non-overlap cells are the 2 and the 5, and both can see cell c(257)r3c4.

The CoALS rule says that there is a strong link between (all occurrences of) the AND'd digits in the overlap cell and the AND'd digits in the non-overlap cells. So, along with the cell marked c, one can form the following chain segment.
Code: Select all
[ab(73=25)r2c69,r23c9 – c(2|5=7)r3c4] <=> [7r23c9 = 7r3c4]
Either bracketed term can then be applied to Kraken cell d(357)r1c8 for an easy elimination.

Code: Select all
7r1c8 - [7r23c9 = 7r3c4] – 7r7c4; stte
 ||                      /
3r1c8 – r1c4 = r7c4 -----
 ||                    /
5r1c8 – (5=7)r7c8 ----


Whew!!! That's some impressive footwork just so you can bypass:

Code: Select all
7r1c8 - 7r7c8 = 7r7c4

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: July 11, 2015

Postby Sudtyro2 » Sun Jul 12, 2015 12:08 am

daj95376 wrote: Whew!!! That's some impressive footwork just so you can bypass:
Code: Select all
7r1c8 - 7r7c8 = 7r7c4

Roger that! I needed to do a "sidestep" around that initial false premise. ;)

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: July 11, 2015

Postby daj95376 » Sun Jul 12, 2015 7:08 am

Sudtyro2 wrote:Roger that! I needed to do a "sidestep" around that initial false premise. ;)

Yes. That's what's been bothering me lately about Kraken/network forcing chains. (N-1) of N premises are false ... but ... they must all agree on an elimination. I always accepted this constraint as acceptable. Now, it's starting to bother me when it's obvious that one (or more) premise is false.

In this case, I noticed that the premise for the CoALS failed to hold water:

Code: Select all
                 CoALS
 **************************************
 (7=3 )r2c9 - (3=2*)r2c6 \
 (7=5*)r3c9               - *(25=7)r3c4

Leads to:

Code: Select all
                 CoALS                       plus
 ************************************** ***************
 (7=3 )r2c9 - (3=2*)r2c6 \
 (7=5*)r3c9               - *(25=7)r3c4 - 7r2c5 = 7r2c9

 =>  [7r23c9 = 7r2c9]



Or, add two cells in [r2] and rewrite to get "7r2c9 = 7r3c9":

Code: Select all
 (7=3)r2c9 - (3=2*)r2c6 - (2=4)r2c7 - (4=7*)r2c5 - *(27=5)r3c4 - (5=7)r3c9  =>  -7 r1c8,r4c9

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: July 11, 2015

Postby JC Van Hay » Sun Jul 12, 2015 8:13 am

Code: Select all
+---------------+------------------+------------------+
| 1   267   67  | 257-3  457  9    | 24   (357)  8    |
| 9   5     8   | 6      47   (23) | 24   1      37   |
| 27  4     3   | (257)  1    8    | 9    6      (57) |
+---------------+------------------+------------------+
| 8   679   4   | 15     2    156  | 57   3579   357  |
| 3   1     5   | 9      8    7    | 6    4      2    |
| 27  2679  679 | 4      3    56   | 8    579    1    |
+---------------+------------------+------------------+
| 6   8     2   | (357)  9    35   | 1    (57)   4    |
| 5   37    1   | 8      6    4    | 37   2      9    |
| 4   379   79  | 12     57   12   | 357  8      6    |
+---------------+------------------+------------------+
Broken Wings : (57)r1c8,r3c49,r7c48=*[3r1c8,3r7c4==*2r3c4 - (2=3)r2c6] :=> -3r1c4; stte

edit : rewritten chain after eleven's comment.
Last edited by JC Van Hay on Tue Jul 14, 2015 6:12 am, edited 1 time in total.
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: July 11, 2015

Postby Sudtyro2 » Mon Jul 13, 2015 7:01 pm

daj95376 wrote:... I noticed that the premise for the CoALS failed to hold water:
Code: Select all
                 CoALS
 **************************************
 (7=3 )r2c9 - (3=2*)r2c6 \
 (7=5*)r3c9               - *(25=7)r3c4

Leads to:
Code: Select all
                 CoALS                       plus
 ************************************** ***************
 (7=3 )r2c9 - (3=2*)r2c6 \
 (7=5*)r3c9               - *(25=7)r3c4 - 7r2c5 = 7r2c9

 =>  [7r23c9 = 7r2c9]

I assume that [7r23c9 = 7r2c9] is the problem area here, because it looks like a direct contradiction. However, a discontinuous AIC loop with strong-strong inference is also a contradiction because it looks like a=b–c...d–e=a => [a=a], which also places a.

Edit: The assumptions in this paragraph are incorrect, as noted by daj95376 in his subsequent posting.
IOW, suppose one views the CoALS plus network above as two converging chains having a common end point. Then, inspection shows that the upper chain's start/end points imply [7r2c9 = 7r2c9], which therefore places 7r2c9. Similarly, the lower chain's start/end points imply [7r3c9 = 7r2c9]. Both scenarios have the common eliminations, -7r1c8,r4c9. And, the placement of 7r2c9 is also the correct solution.

It (hopefully) seems proper to view the CoALS plus network (and its implication) in this manner.

SteveC
Last edited by Sudtyro2 on Tue Jul 14, 2015 1:57 pm, edited 1 time in total.
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: July 11, 2015

Postby daj95376 » Mon Jul 13, 2015 9:01 pm

Sudtyro2 wrote:I assume that [7r23c9 = 7r2c9] is the problem area here, because it looks like a direct contradiction. However, a discontinuous AIC loop with strong-strong inference is also a contradiction because it looks like a=b–c...d–e=a => [a=a], which also places a.

My original notes, which are now gone, indicated that there were several ways to easily convert your network stream

Code: Select all
 7r1c8 - [ 7r23c9 = 7r3c4 ] - 7r7c4

into a discontinuous loop

Code: Select all
 7r1c8 - [ 7r23c9 = 7r3c4 ] - 7r7c4 = 7r7c8 - 7r1c8

-or-

 7r1c8 - [ 7r23c9 = 7r3c4 ] - 7r2c5 = 7r2c9 - 7r1c8

or a contradiction

Code: Select all
 7r1c8 - (7= 3)r2c9 - (3=*2)r2c6 - (2=4)r2c7 - (4=*7)r2c5 \
       - (7=*5)r3c9                                        - *(257=empty)r3c4 ; contradiction


IOW, suppose one views the CoALS plus network above as two converging chains having a common end point. Then, inspection shows that the upper chain's start/end points imply [7r2c9 = 7r2c9], which therefore places 7r2c9. Similarly, the lower chain's start/end points imply [7r3c9 = 7r2c9]. Both scenarios have the common eliminations, -7r1c8,r4c9. And, the placement of 7r2c9 is also the correct solution.

It (hopefully) seems proper to view the CoALS plus network (and its implication) in this manner.

Neither stream can get past "- *(25=7)r3c4" without the other. That's why I wrote "[ 7r23c9 = 7r2c9 ]" for CoALS plus.

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: July 11, 2015

Postby eleven » Mon Jul 13, 2015 9:31 pm

JC Van Hay wrote:Broken Wings : (57)r1c8,r3c49,r7c48=*[3r1c8==*2r3c4 - (2=3)r2c6] :=> -3r1c4; stte

Love it, but don't you need 3r7c4 ?
eleven
 
Posts: 3177
Joined: 10 February 2008

Re: July 11, 2015

Postby Sudtyro2 » Tue Jul 14, 2015 2:02 am

daj95376 wrote: Neither stream can get past "- *(25=7)r3c4" without the other. That's why I wrote "[ 7r23c9 = 7r2c9 ]" for CoALS plus.

Yes, of course that's correct!! I went right by that minor little detail. :oops:
As per usual, many thanks for the helpful examples and clarifications!!

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: July 11, 2015

Postby JC Van Hay » Tue Jul 14, 2015 6:05 am

eleven wrote:
JC Van Hay wrote:Broken Wings : (57)r1c8,r3c49,r7c48=*[3r1c8==*2r3c4 - (2=3)r2c6] :=> -3r1c4; stte

Love it, but don't you need 3r7c4 ?
I forgot it :( Just replace 3r1c8 by 3r1c8,r7c4 !
JC Van Hay
 
Posts: 719
Joined: 22 May 2010


Return to Puzzles