- Code: Select all
*-----------*
|...|...|..8|
|95.|6..|...|
|..3|.1.|96.|
|---+---+---|
|8.4|.2.|...|
|..5|9.7|6..|
|...|.3.|8.1|
|---+---+---|
|.82|.9.|1..|
|...|..4|.29|
|4..|...|...|
*-----------*
Play/Print this puzzle online
*-----------*
|...|...|..8|
|95.|6..|...|
|..3|.1.|96.|
|---+---+---|
|8.4|.2.|...|
|..5|9.7|6..|
|...|.3.|8.1|
|---+---+---|
|.82|.9.|1..|
|...|..4|.29|
|4..|...|...|
*-----------*
*--------------------------------------------------------------------------------*
| 1 267 67 |a2357 A457 9 | 24 b357a 8 |
| 9 5 8 | 6 Cd4-7e 23 | 24 1 c37 |
| 27 4 3 | 257 1 8 | 9 6 57 |
|--------------------------+--------------------------+--------------------------|
| 8 679 4 | 15 2 156 | 57 3579 357 |
| 3 1 5 | 9 8 7 | 6 4 2 |
| 27 2679 679 | 4 3 56 | 8 579 1 |
|--------------------------+--------------------------+--------------------------|
| 6 8 2 | 357c 9 35c | 1 57b 4 |
| 5 37 1 | 8 6 4 | 37 2 9 |
| 4 379 79 | 12 B57d 12 | 357 8 6 |
*--------------------------------------------------------------------------------*
Kraken Row 1 Digit 5 :
5 r1c4 - 3 r1c4 = r1c8 - (3=7) r2c9 - 7 r2c5;
5 r1c5 - (5=7) r9c5 - 7 r2c5;
5 r1c8 - r7c8 = r7c46 - (5=7)r9c5 - 7 r2c5; => - 7 r2c5; stte
*------------------------------------------------------------*
| 1 267 67 | 2357 457 9 | 24 357 8 |
| 9 5 8 | 6 d47 d23 |d24 1 37 |
| 27 4 3 |e257 1 8 | 9 6 f57 |
*-------------------+-------------------+--------------------|
| 8 679 4 |a15 2 a156 | 7-5 379-5 g357 |
| 3 1 5 | 9 8 7 | 6 4 2 |
| 27 2679 679 | 4 3 b56 | 8 579 1 |
*-------------------+-------------------+--------------------|
| 6 8 2 | 357 9 c35 | 1 57 4 |
| 5 37 1 | 8 6 4 | 37 2 9 |
| 4 379 79 | 12 57 12 | 357 8 6 |
*------------------------------------------------------------*
1 267 67 |d2357 e457 9 | 24 357 8
9 5 8 | 6 47 23 | 24 1 37
27 4 3 | 257 1 8 | 9 6 57
------------------------+----------------------+---------------------
8 679 4 | 15 2 156 | 57 3579 357
3 1 5 | 9 8 7 | 6 4 2
27 2679 679 | 4 3 56 | 8 579 1
------------------------+----------------------+---------------------
6 8 2 |c357 9 35 | 1 b57 4
5 37 1 | 8 6 4 | 37 2 9
4 379 79 | 12 7-5 12 |a357 8 6
(5)r9c7 = (5-7)r7c8 = (7-3)r7c4 = (3-5)r1c4 = r1c5 => -5 r9c5; stte
\
r1c8
*------------------------------------------------------------*
| 1 267 67 | 2357 457 9 | 24 d357 8 |
| 9 5 8 | 6 47 a23 | 24 1 ab37 |
| 27 4 3 |c257 1 8 | 9 6 b57 |
*-------------------+-------------------+--------------------|
| 8 679 4 | 15 2 156 | 57 3579 357 |
| 3 1 5 | 9 8 7 | 6 4 2 |
| 27 2679 679 | 4 3 56 | 8 579 1 |
*-------------------+-------------------+--------------------|
| 6 8 2 | 35-7 9 35 | 1 57 4 |
| 5 37 1 | 8 6 4 | 37 2 9 |
| 4 379 79 | 12 57 12 | 357 8 6 |
*------------------------------------------------------------*
[ab(73=25)r2c69,r23c9 – c(2|5=7)r3c4] <=> [7r23c9 = 7r3c4]
7r1c8 - [7r23c9 = 7r3c4] – 7r7c4; stte
|| /
3r1c8 – r1c4 = r7c4 -----
|| /
5r1c8 – (5=7)r7c8 ----
Sudtyro2 wrote:
- Code: Select all
*------------------------------------------------------------*
| 1 267 67 | 2357 457 9 | 24 d357 8 |
| 9 5 8 | 6 47 a23 | 24 1 ab37 |
| 27 4 3 |c257 1 8 | 9 6 b57 |
*-------------------+-------------------+--------------------|
| 8 679 4 | 15 2 156 | 57 3579 357 |
| 3 1 5 | 9 8 7 | 6 4 2 |
| 27 2679 679 | 4 3 56 | 8 579 1 |
*-------------------+-------------------+--------------------|
| 6 8 2 | 35-7 9 35 | 1 57 4 |
| 5 37 1 | 8 6 4 | 37 2 9 |
| 4 379 79 | 12 57 12 | 357 8 6 |
*------------------------------------------------------------*
The above grid is suitable for the use of MJ's CoALS rule on overlapping ALS a(237)r2c69 and b(357)r23c9. Digits in the overlap cell are the 3s and 7s. Digits in the non-overlap cells are the 2 and the 5, and both can see cell c(257)r3c4.
The CoALS rule says that there is a strong link between (all occurrences of) the AND'd digits in the overlap cell and the AND'd digits in the non-overlap cells. So, along with the cell marked c, one can form the following chain segment.Either bracketed term can then be applied to Kraken cell d(357)r1c8 for an easy elimination.
- Code: Select all
[ab(73=25)r2c69,r23c9 – c(2|5=7)r3c4] <=> [7r23c9 = 7r3c4]
- Code: Select all
7r1c8 - [7r23c9 = 7r3c4] – 7r7c4; stte
|| /
3r1c8 – r1c4 = r7c4 -----
|| /
5r1c8 – (5=7)r7c8 ----
7r1c8 - 7r7c8 = 7r7c4
daj95376 wrote: Whew!!! That's some impressive footwork just so you can bypass:
- Code: Select all
7r1c8 - 7r7c8 = 7r7c4
Sudtyro2 wrote:Roger that! I needed to do a "sidestep" around that initial false premise.
CoALS
**************************************
(7=3 )r2c9 - (3=2*)r2c6 \
(7=5*)r3c9 - *(25=7)r3c4
CoALS plus
************************************** ***************
(7=3 )r2c9 - (3=2*)r2c6 \
(7=5*)r3c9 - *(25=7)r3c4 - 7r2c5 = 7r2c9
=> [7r23c9 = 7r2c9]
(7=3)r2c9 - (3=2*)r2c6 - (2=4)r2c7 - (4=7*)r2c5 - *(27=5)r3c4 - (5=7)r3c9 => -7 r1c8,r4c9
+---------------+------------------+------------------+
| 1 267 67 | 257-3 457 9 | 24 (357) 8 |
| 9 5 8 | 6 47 (23) | 24 1 37 |
| 27 4 3 | (257) 1 8 | 9 6 (57) |
+---------------+------------------+------------------+
| 8 679 4 | 15 2 156 | 57 3579 357 |
| 3 1 5 | 9 8 7 | 6 4 2 |
| 27 2679 679 | 4 3 56 | 8 579 1 |
+---------------+------------------+------------------+
| 6 8 2 | (357) 9 35 | 1 (57) 4 |
| 5 37 1 | 8 6 4 | 37 2 9 |
| 4 379 79 | 12 57 12 | 357 8 6 |
+---------------+------------------+------------------+
daj95376 wrote:... I noticed that the premise for the CoALS failed to hold water:
- Code: Select all
CoALS
**************************************
(7=3 )r2c9 - (3=2*)r2c6 \
(7=5*)r3c9 - *(25=7)r3c4
Leads to:
- Code: Select all
CoALS plus
************************************** ***************
(7=3 )r2c9 - (3=2*)r2c6 \
(7=5*)r3c9 - *(25=7)r3c4 - 7r2c5 = 7r2c9
=> [7r23c9 = 7r2c9]
Sudtyro2 wrote:I assume that [7r23c9 = 7r2c9] is the problem area here, because it looks like a direct contradiction. However, a discontinuous AIC loop with strong-strong inference is also a contradiction because it looks like a=b–c...d–e=a => [a=a], which also places a.
7r1c8 - [ 7r23c9 = 7r3c4 ] - 7r7c4
7r1c8 - [ 7r23c9 = 7r3c4 ] - 7r7c4 = 7r7c8 - 7r1c8
-or-
7r1c8 - [ 7r23c9 = 7r3c4 ] - 7r2c5 = 7r2c9 - 7r1c8
7r1c8 - (7= 3)r2c9 - (3=*2)r2c6 - (2=4)r2c7 - (4=*7)r2c5 \
- (7=*5)r3c9 - *(257=empty)r3c4 ; contradiction
IOW, suppose one views the CoALS plus network above as two converging chains having a common end point. Then, inspection shows that the upper chain's start/end points imply [7r2c9 = 7r2c9], which therefore places 7r2c9. Similarly, the lower chain's start/end points imply [7r3c9 = 7r2c9]. Both scenarios have the common eliminations, -7r1c8,r4c9. And, the placement of 7r2c9 is also the correct solution.
It (hopefully) seems proper to view the CoALS plus network (and its implication) in this manner.
JC Van Hay wrote:Broken Wings : (57)r1c8,r3c49,r7c48=*[3r1c8==*2r3c4 - (2=3)r2c6] :=> -3r1c4; stte
daj95376 wrote: Neither stream can get past "- *(25=7)r3c4" without the other. That's why I wrote "[ 7r23c9 = 7r2c9 ]" for CoALS plus.
I forgot it Just replace 3r1c8 by 3r1c8,r7c4 !eleven wrote:JC Van Hay wrote:Broken Wings : (57)r1c8,r3c49,r7c48=*[3r1c8==*2r3c4 - (2=3)r2c6] :=> -3r1c4; stte
Love it, but don't you need 3r7c4 ?