maybe a little off topic as there is no JE in my solution
the puzzle is in 4-template and solves with this one combination (1 5 6 7)
- Code: Select all
#VT: (39 5 34 12 53 82 39 214 125)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (33 42) nil nil nil nil nil
1568 2 678 3 4 1567 568 9 15678
14569 15679 4679 2 8 1567 456 14567 3
134568 15678 34678 17 157 9 24568 1245678 15678
12489 189 5 14789 6 137 2389 2378 789
7 689 24689 489 359 35 1 23568 5689
1689 3 689 1789 1579 2 5689 5678 4
23689 689 1 5 239 34 7 3468 689
3569 4 3679 179 1379 8 3569 1356 2
23589 5789 23789 6 12379 1347 34589 13458 1589
(1 5 6 7): 36 instances
..7..65.115...7.6...615...7.15.6..7.7....51.66..71..5..615..7..5...7.61..7.6.1..5
..7..65.115...7.6...615..7..15.6...77....51.66..71..5..615..7..5...7.61..7.6.1..5
..7..65.115...7.6..6.15...7.15.6..7.7....51.6..671..5.6.15..7..5...7.61..7.6.1..5
..7..65.115...7.6..6.15..7..15.6...77....51.6..671..5.6.15..7..5...7.61..7.6.1..5
..7..65.115...76...6.15...7.15.6..7.7....51.66..71..5...15..76.5.6.7..1..7.6.1..5
..7..65.115...76...6.15..7..15.6...77....51.66..71..5...15..76.5.6.7..1..7.6.1..5
..7..65.115...76...6.15...7.15.6..7.7....516.6..71..5...15..7.65.6.7..1..7.6.1..5
..7..65.115...76...6.15..7..15.6...77....516.6..71..5...15..7.65.6.7..1..7.6.1..5
..7..65.115...7.6.6..15...7.15.6..7.7....51.6..671..5..615..7..5...7.61..7.6.1..5
..7..65.115...7.6.6..15..7..15.6...77....51.6..671..5..615..7..5...7.61..7.6.1..5
..7..65.115...7.6.6..15...7.15.6..7.76...51.....71.65...15..7.65.6.7..1..7.6.1..5
..7..65.115...7.6.6..15..7..15.6...776...51.....71.65...15..7.65.6.7..1..7.6.1..5
..7..65.1156..7......15..76.15.6...77....516.6..71..5..615..7..5...7.61..7.6.1..5
..7..65.1156..7......15..67.15.6..7.7....51.66..71..5..615..7..5...7.61..7.6.1..5
..6..75.115...6.7...715...6.15.6...77....516.6..71..5..615..7..5...7.61..7.6.1..5
..6..75.115...6.7..7.15...6.15.6...77....516.6..71..5..615..7..5...7.61...76.1..5
..6..75.115...6.7..7.15...6.15.6...77....516.6..71..5..615..7..5.7...61....671..5
..6..75.1157..6......15..76.15.6...77....516.6..71..5..615..7..5...7.61..7.6.1..5
..6..75.115...6.7...715..6..15.6...77....51.66..71..5..615..7..5...7.61..7.6.1..5
..6..75.115...6.7..7.15..6..15.6...77....51.66..71..5..615..7..5...7.61...76.1..5
..6..75.115...6.7..7.15..6..15.6...77....51.66..71..5..615..7..5.7...61....671..5
..6..75.1157..6......15..67.15.6..7.7....51.66..71..5..615..7..5...7.61..7.6.1..5
6....75.115...6.7...715...6.15.6...77....516...671..5..615..7..5...7.61..7.6.1..5
6....75.115...6.7..7.15...6.15.6...77....516...671..5..615..7..5...7.61...76.1..5
6....75.115...6.7..7.15...6.15.6...77....516...671..5..615..7..5.7...61....671..5
6....75.1157..6......15..76.15.6...77....516...671..5..615..7..5...7.61..7.6.1..5
6....75.115...6.7...715...6.15.6...776...51.....71.65...15..76.5.6.7..1..7.6.1..5
6....75.115...6.7..7.15...6.15.6...776...51.....71.65...15..76.5.6.7..1...76.1..5
6....75.1157..6......15..76.15.6...776...51.....71.65...15..76.5.6.7..1..7.6.1..5
6....75.115...6.7...715..6..15.6...77....51.6..671..5..615..7..5...7.61..7.6.1..5
6....75.115...6.7..7.15..6..15.6...77....51.6..671..5..615..7..5...7.61...76.1..5
6....75.115...6.7..7.15..6..15.6...77....51.6..671..5..615..7..5.7...61....671..5
6....75.1157..6......15..67.15.6..7.7....51.6..671..5..615..7..5...7.61..7.6.1..5
6....75.115...6.7...715..6..15.6...776...51.....71.65...15..7.65.6.7..1..7.6.1..5
6....75.115...6.7..7.15..6..15.6...776...51.....71.65...15..7.65.6.7..1...76.1..5
6....75.1157..6......15..67.15.6..7.76...51.....71.65...15..7.65.6.7..1..7.6.1..5
........11...........1......1.............1......1......1.............1......1...
......5...5...........5......5...........5..........5....5.....5................5
.....6..........6...6..........6............66.........6.............6.....6.....
.....6..........6..6...........6............6..6......6..............6.....6.....
.....6.........6...6...........6............66...............6...6.........6.....
.....6.........6...6...........6...........6.6................6..6.........6.....
.....6..........6.6............6............6..6.......6.............6.....6.....
.....6..........6.6............6.....6.............6..........6..6.........6.....
.....6.....6..............6....6...........6.6.........6.............6.....6.....
.....6.....6.............6.....6............66.........6.............6.....6.....
..6...........6...........6....6...........6.6.........6.............6.....6.....
..6...........6..........6.....6............66.........6.............6.....6.....
6.............6...........6....6...........6...6.......6.............6.....6.....
6.............6...........6....6.....6.............6.........6...6.........6.....
6.............6..........6.....6............6..6.......6.............6.....6.....
6.............6..........6.....6.....6.............6..........6..6.........6.....
.....7..........7...7..............77...........7...........7......7.....7.......
.....7..........7..7...............77...........7...........7......7......7......
.....7..........7..7...............77...........7...........7....7..........7....
.....7.....7..............7.......7.7...........7...........7......7.....7.......
.....7.....7.............7.........77...........7...........7......7.....7.......
..7...........7...........7.......7.7...........7...........7......7.....7.......
..7...........7..........7.........77...........7...........7......7.....7.......
#VT: (1 5 34 12 1 14 7 214 125)
Cells: (9 10 22 29 50 71 78) nil nil nil (7 11 23 42 53 64 81) nil (49) nil nil
SetVC: ( n5r1c7 n1r1c9 n1r2c1 n5r2c2 n1r3c4 n5r3c5
n1r4c2 n5r5c6 n7r6c4 n1r6c5 n5r6c8 n5r8c1
n9r8c4 n1r8c8 n1r9c6 n5r9c9 n3r4c6 n9r5c5
n4r7c6 n3r5c8 n9r2c3 n2r5c3 n4r5c4 n4r4c1
n4r3c3 n8r4c4 n9r6c1 n3r3c1 n3r7c5 n7r8c5
n2r9c5 n8r9c1 n4r9c8 n6r1c1 n7r1c6 n6r2c6
n4r2c7 n7r2c8 n2r4c8 n2r7c1 n8r1c3 n7r3c2
n9r4c7 n7r4c9 n6r6c3 n8r6c7 n3r8c3 n6r8c7
n9r9c2 n7r9c3 n3r9c7 n2r3c7 n8r5c2 n6r5c9
n6r7c2 n8r7c8 n9r7c9 n6r3c8 n8r3c9 )
6 2 8 3 4 7 5 9 1
1 5 9 2 8 6 4 7 3
3 7 4 1 5 9 2 6 8
4 1 5 8 6 3 9 2 7
7 8 2 4 9 5 1 3 6
9 3 6 7 1 2 8 5 4
2 6 1 5 3 4 7 8 9
5 4 3 9 7 8 6 1 2
8 9 7 6 2 1 3 4 5
it is also in t&e(2,Singles) and solves with three nested chains + basics
basics:
- Code: Select all
intersection:
((((4 0) (7 6 8) (3 4)) ((4 0) (9 6 8) (1 3 4 7))))
QUAD BOX: ((4 2 4) (1 8 9)) ((5 2 4) (6 8 9)) ((6 1 4) (1 6 8 9)) ((6 3 4) (6 8 9))
(((4 1 4) (1 2 4 8 9)) ((5 3 4) (2 4 6 8 9)))
- Code: Select all
1568 2 678 3 4 1567 568 9 15678
14569 15679 4679 2 8 1567 456 14567 3
134568 15678 34678 17 157 9 24568 1245678 15678
24 189 5 14789 6 137 2389 2378 789
7 689 24 489 359 35 1 23568 5689
1689 3 689 1789 1579 2 5689 5678 4
23689 689 1 5 239 34 7 3468 689
3569 4 3679 179 1379 8 3569 1356 2
23589 5789 23789 6 12379 1347 34589 13458 1589
n1r4c2 OR n8r4c2 OR n9r4c2 => r2c8 <> 1
n1r3c12 OR n1r3c45 OR n1r3c89 => r9c6 <> 7
n1r12c6 OR n1r4c6 OR n1r9c6 => r6c8 <> 7
bte.
n1r4c2 OR n8r4c2 OR n9r4c2 => r2c8 <> 1
- Code: Select all
((1 0) (4 2 4) (1 8 9)) n1r4c2
1568 2 678 3 4 1567 568 9 15678
14569 5679 4679 2 8 1567 456 14567 3
134568 5678 34678 17 157 9 24568 1245678 15678
24 1 5 4789 6 37 2389 2378 789
7 689 24 489 359 35 1 23568 5689
689 3 689 1789 1579 2 5689 5678 4
23689 689 1 5 239 34 7 3468 689
3569 4 3679 179 1379 8 3569 1356 2
23589 5789 23789 6 12379 1347 34589 13458 1589
1r2c8 => r1359c9 <> 5
r2c8=1 - c9n1{r13 r9}
r2c8=1 - c9n1{r13 r9} - c6n1{r9 r1} - r3c4{n1 n7} - r3c5{n17 n5}
r2c8=1 - c9n1{r13 r9} - c6n1{r9 r1} - r3c4{n1 n7} - r3c5{n17 n5} - c6n5{r2 r5}
r2c8=1 - c9n1{r13 r9} - c6n1{r9 r1} - r3c4{n1 n7} - b3n7{r3c89 r1c9}
=> r2c8 <> 1
((8 0) (4 2 4) (1 8 9)) n8r4c2
1568 2 678 3 4 1567 568 9 15678
14569 15679 4679 2 8 1567 456 14567 3
134568 1567 34678 17 157 9 24568 1245678 15678
24 8 5 1479 6 137 239 237 79
7 69 24 489 359 35 1 23568 5689
169 3 69 1789 1579 2 5689 5678 4
23689 69 1 5 239 34 7 3468 689
3569 4 3679 179 1379 8 3569 1356 2
23589 579 23789 6 12379 1347 34589 13458 1589
1r2c8 => r1359c9 <> 5
r2c8=1 - c9n1{r13 r9}
r2c8=1 - c2n1{r2 r3} - r3c4{n1 n7} - r3c5{n17 n5}
r2c8=1 - c2n1{r2 r3} - r3c4{n1 n7} - r3c5{n17 n5} - c6n5{r12 r5}
r2c8=1 - c2n1{r2 r3} - r3c4{n1 n7} - b3n7{r3c89 r1c9}
=> r2c8 <> 1
((9 0) (4 2 4) (1 8 9)) n9r4c2
1568 2 678 3 4 1567 568 9 15678
14569 1567 4679 2 8 1567 456 14567 3
134568 15678 34678 17 157 9 24568 1245678 15678
24 9 5 1478 6 137 238 2378 78
7 68 24 489 359 35 1 23568 5689
168 3 68 1789 1579 2 5689 5678 4
23689 68 1 5 239 34 7 3468 689
3569 4 3679 179 1379 8 3569 1356 2
23589 578 23789 6 12379 1347 34589 13458 1589
1r2c8 => r1359c9 <> 5
r2c8=1 - c9n1{r13 r9}
r2c8=1 - c2n1{r2 r3} - r3c4{n1 n7} - r3c5{n17 n5}
r2c8=1 - c2n1{r2 r3} - r3c4{n1 n7} - r3c5{n17 n5} - c6n5{r12 r5}
r2c8=1 - c2n1{r2 r3} - r3c4{n1 n7} - b3n7{r3c89 r1c9}
=> r2c8 <> 1
n1r3c12 OR n1r3c45 OR n1r3c89 => r9c6 <> 7
- Code: Select all
((1 0 1 0) ((3 1 1) (1 3 4 5 6 8)) ((3 2 1) (1 5 6 7 8))) n1r3c12
568 2 678 3 4 16 568 9 15678
4569 5679 4679 2 8 16 456 14567 3
13468 168 3468 7 5 9 2468 2468 68
24 189 5 1489 6 137 2389 2378 789
7 689 24 489 39 35 1 23568 5689
1689 3 689 189 179 2 5689 5678 4
23689 689 1 5 239 34 7 3468 689
3569 4 3679 19 1379 8 3569 1356 2
23589 5789 23789 6 12379 1347 34589 13458 1589
7r9c6 => r5c6 <> 5
r9c6=7 - c2n7{r9 r2} - r1n7{c3 c9} - c9n1{r1 r9} - c9n5{r9 r5}
=> r9c6 <> 7
((1 0 1 0) ((3 4 2) (1 7)) ((3 5 2) (1 5 7))) n1r3c45
1568 2 678 3 4 567 568 9 15678
14569 15679 4679 2 8 567 456 14567 3
34568 5678 34678 17 157 9 24568 245678 5678
24 189 5 14789 6 137 2389 2378 789
7 689 24 489 359 35 1 23568 5689
1689 3 689 1789 1579 2 5689 5678 4
23689 689 1 5 239 34 7 3468 689
3569 4 3679 179 1379 8 3569 1356 2
23589 5789 23789 6 12379 1347 34589 13458 1589
7r9c6 => r1c19 <> 1
r9c6=7 - 56r12c6 - r5c6{n5 n3} - r4c6{n37 n1} - c2n1{r4 r2}
r9c6=7 - r8n7{c45 c3} - r1n7{c3 c9}
=> r9c6 <> 7
((1 0 1 0) ((3 8 3) (1 2 4 5 6 7 8)) ((3 9 3) (1 5 6 7 8))) n1r3c89
1568 2 678 3 4 16 568 9 5678
14569 15679 4679 2 8 16 456 4567 3
3468 68 3468 7 5 9 2468 12468 168
24 189 5 1489 6 137 2389 2378 789
7 689 24 489 39 35 1 23568 5689
1689 3 689 189 179 2 5689 5678 4
23689 689 1 5 239 34 7 3468 689
3569 4 3679 19 1379 8 3569 1356 2
23589 5789 23789 6 12379 1347 34589 13458 1589
7r9c6 => r159c9 <> 5
r9c6=7 - c2n7{r9 r2} - r1n7{c3 c9}
r9c6=7 - c2n7{r9 r2} - c2n1{r2 r4} - r4c6{n17 n3} - r5c5{n3 n5}
r9c6=7 - c2n7{r9 r2} - c2n5{r2 r9}
=> r9c6 <> 7
n1r12c6 OR n1r4c6 OR n1r9c6 => r6c8 <> 7
- Code: Select all
((1 0 2 0) ((1 6 2) (1 5 6 7)) ((2 6 2) (1 5 6 7))) n1r12c6
((5 1 21) (3 5 2) (1 5 7)) n5r3c5
((7 1 20) (3 4 2) (1 7)) n7r3c4
((5 1 21) (3 5 2) (1 5 7)) n5r3c5
((5 2 3) (5 6 5) (3 5)) n5r5c6
1568 2 678 3 4 16 568 9 15678
14569 15679 4679 2 8 16 456 14567 3
13468 168 3468 7 5 9 2468 12468 168
24 189 5 1489 6 37 2389 2378 789
7 689 24 489 39 5 1 2368 689
1689 3 689 189 179 2 5689 5678 4
23689 689 1 5 239 34 7 3468 689
3569 4 3679 19 1379 8 3569 1356 2
23589 5789 23789 6 12379 347 34589 13458 1589
7r6c8 => r29c2 <> 5
r6c8=7 - c9n7{r4 r1} - c9n5{r1 r9} - c8n5{r89 r2}
=> r6c8 <> 7
((1 0) (4 6 5) (1 3 7)) n1r4c6
((1 1 1) (6 1 4) (1 6 8 9)) n1r6c1
((3 1 1 11) ((5 5 5) (3 5 9)) ((5 6 5) (3 5))) n3r5c56
((1 1 1) (6 1 4) (1 6 8 9)) n1r6c1
((1 2 1) (1 9 3) (1 5 6 7 8)) n1r1c9
((1 2 1) (1 9 3) (1 5 6 7 8)) n1r1c9
((1 3 1) (2 2 1) (1 5 6 7 9)) n1r2c2
568 2 678 3 4 567 568 9 1
4569 1 4679 2 8 567 456 4567 3
34568 5678 34678 17 157 9 24568 245678 5678
24 89 5 4789 6 1 2389 2378 789
7 689 24 489 359 35 1 2568 5689
1 3 689 789 579 2 5689 5678 4
23689 689 1 5 239 34 7 3468 689
3569 4 3679 179 1379 8 3569 1356 2
23589 5789 23789 6 12379 347 34589 13458 589
7r6c8 => r39c2 <> 7
r6c8=7 - c9n7{r4 r3} - 15r3c45 - c2n5{r3 r9}
=> r6c8 <> 7
((1 0) (9 6 8) (1 3 4 7)) n1r9c6
((4 1 10) (7 6 8) (3 4)) n4r7c6
((1 1 3) (8 8 9) (1 3 5 6)) n1r8c8
((4 1 10) (7 6 8) (3 4)) n4r7c6
((3 2 2 11) ((4 6 5) (1 3 7)) ((5 6 5) (3 5))) n3r45c6
((1 1 3) (8 8 9) (1 3 5 6)) n1r8c8
((1 2 1 2) ((2 1 1) (1 4 5 6 9)) ((2 2 1) (1 5 6 7 9))) n1r2c12
((1 2 1 2) ((2 1 1) (1 4 5 6 9)) ((2 2 1) (1 5 6 7 9))) n1r2c12
((1 3 12) (1 9 3) (1 5 6 7 8)) n1r1c9
568 2 678 3 4 567 568 9 1
14569 15679 4679 2 8 567 456 4567 3
34568 5678 34678 17 157 9 24568 245678 5678
24 189 5 14789 6 37 2389 2378 789
7 689 24 489 59 35 1 23568 5689
1689 3 689 1789 1579 2 5689 5678 4
23689 689 1 5 239 4 7 368 689
3569 4 3679 79 379 8 3569 1 2
23589 5789 23789 6 2379 1 34589 3458 589
7r6c8 => r8c17 <> 5
r6c8=7 - c9n7{r4 r3} - r3c4{n7 n1} - r3c5{n17 n5} - r6n5{c5 c7} - r1n5{c7 c1}
=> r6c8 <> 7
bte:
- Code: Select all
intersections:
((((7 0) (4 8 6) (2 3 7 8)) ((7 0) (4 9 6) (7 8 9)))
(((7 0) (1 6 2) (1 5 6 7)) ((7 0) (2 6 2) (1 5 6 7)))
ste.