January 5, 2015

Post puzzles for others to solve here.

January 5, 2015

Postby ArkieTech » Mon Jan 05, 2015 1:59 am

Code: Select all
 *-----------*
 |.1.|...|..2|
 |4..|21.|.7.|
 |7.9|..3|...|
 |---+---+---|
 |.78|4.6|...|
 |..1|...|8..|
 |...|3.1|79.|
 |---+---+---|
 |...|8..|6.9|
 |.4.|.52|..7|
 |8..|...|.4.|
 *-----------*



Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 2683
Joined: 29 May 2006
Location: NW Arkansas USA

Re: January 5, 2015

Postby Leren » Mon Jan 05, 2015 2:15 am

Code: Select all
*------------------------------------------------------------------------*
| 36     1      356     | 79     479     8       | 49     356    2       |
| 4      8      356     | 2      1      a59      | 359    7      356     |
| 7      2      9       |b56     46      3       | 145    15     8       |
|-----------------------+------------------------+-----------------------|
| 359    7      8       | 4      29      6       | 1235   1235   135     |
| 369    369    1       | 579    279     579     | 8      236    4       |
| 2      56     4       | 3      8       1       | 7      9      56      |
|-----------------------+------------------------+-----------------------|
| 135    35     27      | 8      3-7     4       | 6      1235   9       |
| 1369   4      36      |c169    5       2       | 13     8      7       |
| 8      3569   2-7     |c1679   369-7 ca79      | 1235   4      135     |
*-----------------------------------------------------------------------*

ALS XY Wing: (7=5) r29c6 - (5=6) r3c4 - (6=7) r8c4, r9c46 => - 7 r7c5, r9c35; stte

Leren
Leren
 
Posts: 2932
Joined: 03 June 2012

Re: January 5, 2015

Postby SteveG48 » Mon Jan 05, 2015 3:20 am

Code: Select all
 *------------------------------------------------------------*
 | 36    1     356   |ah79  ah479   8     | 4-9   356   2     |
 | 4     8     356   |  2     1     59    | 359   7     356   |
 | 7     2     9     | a56  ah46    3     | 145   15    8     |
 *-------------------+--------------------+-------------------|
 |d359   7     8     |  4     29    6     | 1235  1235  135   |
 |c369  c369   1     | b579   279   579   | 8     236   4     |
 | 2     56    4     |  3     8     1     | 7     9     56    |
 *-------------------+--------------------+-------------------|
 | 135   35    27    |  8    g37    4     | 6     1235  9     |
 |e1369  4     36    |  169   5     2     | 13    8     7     |
 | 8    f3569  27    |  1679 g3679 g79    | 1235  4     135   |
 *------------------------------------------------------------*


(9=57)r13c45 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5 => -9 r1c7 ; stte
Steve
User avatar
SteveG48
2017 Supporter
 
Posts: 2017
Joined: 08 November 2013
Location: Orlando, Florida

Re: January 5, 2015

Postby pjb » Mon Jan 05, 2015 4:10 am

accidental duplicate
Last edited by pjb on Mon Jan 05, 2015 10:00 pm, edited 2 times in total.
pjb
2014 Supporter
 
Posts: 1724
Joined: 11 September 2011
Location: Sydney, Australia

Re: January 5, 2015

Postby pjb » Mon Jan 05, 2015 4:21 am

Code: Select all
 36      1       356    | 79     479    8      | 49     356    2     
 4       8       356    | 2      1     b59     | 359    7      356   
 7       2       9      |a56     4-6    3      | 145    15     8     
------------------------+----------------------+---------------------
g359     7       8      | 4     h29     6      | 1235   1235   135   
 369     369     1      | 579    279    579    | 8      236    4     
 2      f56      4      | 3      8      1      | 7      9      56     
------------------------+----------------------+---------------------
 135    e35      27     | 8     d37     4      | 6      1235   9     
 1369    4       36     | 19-6   5      2      | 13     8      7     
 8       3569    27     | 179-6  3679  c79     | 1235   4      135   

(6=5)r3c4 - (5=9)r2c6 - (9=7)r9c6 - (7=3)r7c5 - (3=5)r7c2 - r6c2 = (5-9)r4c1 = r4c5-(9=6)r9c5 => -6 r3c5, r8c4, r9c4; stte
                               \ _________\ ____________________________________________ /


Phil
pjb
2014 Supporter
 
Posts: 1724
Joined: 11 September 2011
Location: Sydney, Australia

Re: January 5, 2015

Postby gurth » Mon Jan 05, 2015 1:53 pm

Image
gurth
 
Posts: 358
Joined: 11 February 2006
Location: Cape Town, South Africa

Re: January 5, 2015

Postby JC Van Hay » Mon Jan 05, 2015 5:41 pm

Code: Select all
+-----------------+---------------------+-----------------+
| 36    1     356 | 79    479      8    | 49    356   2   |
| 4     8     356 | 2     1        (59) | 359   7     356 |
| 7     2     9   | (56)  4(6)     3    | 145   15    8   |
+-----------------+---------------------+-----------------+
| 359   7     8   | 4     29       6    | 1235  1235  135 |
| 369   369   1   | 579   279      579  | 8     236   4   |
| 2     56    4   | 3     8        1    | 7     9     56  |
+-----------------+---------------------+-----------------+
| 135   35    27  | 8     (37)     4    | 6     1235  9   |
| 1369  4     36  | 169   5        2    | 13    8     7   |
| 8     3569  27  | 1679  9-37(6)  (79) | 1235  4     135 |
+-----------------+---------------------+-----------------+
[6r9c5=6r3c5 - (6=59)r3c4.r2c6 - (9=73)r9c6.r7c5] - (73)r9c5; stte
JC Van Hay
 
Posts: 716
Joined: 22 May 2010

Re: January 5, 2015

Postby DonM » Tue Jan 06, 2015 7:02 pm

SteveG48 wrote:
Code: Select all
 *------------------------------------------------------------*
 | 36    1     356   |ah79  ah479   8     | 4-9   356   2     |
 | 4     8     356   |  2     1     59    | 359   7     356   |
 | 7     2     9     | a56  ah46    3     | 145   15    8     |
 *-------------------+--------------------+-------------------|
 |d359   7     8     |  4     29    6     | 1235  1235  135   |
 |c369  c369   1     | b579   279   579   | 8     236   4     |
 | 2     56    4     |  3     8     1     | 7     9     56    |
 *-------------------+--------------------+-------------------|
 | 135   35    27    |  8    g37    4     | 6     1235  9     |
 |e1369  4     36    |  169   5     2     | 13    8     7     |
 | 8    f3569  27    |  1679 g3679 g79    | 1235  4     135   |
 *------------------------------------------------------------*


(9=57)r13c45 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5 => -9 r1c7 ; stte


Not to select Steve out for special punishment (given the 'other' thread), but I was made aware of this solution by professor Eleven as part of a (rejected) notation homework assignment: What really caught my interest was the opening move.

If I am interpreting it correctly the full ALS is candidates 4,5,6,7,9 in cells r13c45. At first glance the move breaks the rules of the use of an ALS whereby all target candidates of the ALS (in this case 57) must 'see' all likewise candidates in the ALS: Here there is a 7 in r1c5 which doesn't 'see' cell r5c4.

On the other hand, my guess is that Steve's logic is that if 'not (9)r1c45' then that leaves 7 in r1c4 which must leave 4 in r1c5 so the 7 in r1c5 is not operative and can be disregarded as far as the ALS target is concerned. If I'm guessing Steve's logic correctly then there's something potentially clever about the premise, but I'm not sure the logic is accurate.

I don't think I've ever come across the use of this particular ALS construct before. My concern is the fact that groups (ie. here (9)r1c45)) have their own set of logic rules and I'm not so sure that one can assume the premise that 'not(9)r1c45" can allow the assumption (that 7 is placed in r1c4 thus removing the 7 in r1c5) being made here. (Again: All of this being dependent on the fact that I'm not missing something entirely different here.)

If David is still here, I'd particularly appreciate his input.
DonM
2013 Supporter
 
Posts: 475
Joined: 13 January 2008

Re: January 5, 2015

Postby SteveG48 » Tue Jan 06, 2015 7:26 pm

DonM wrote:
SteveG48 wrote:
Code: Select all
 *------------------------------------------------------------*
 | 36    1     356   |ah79  ah479   8     | 4-9   356   2     |
 | 4     8     356   |  2     1     59    | 359   7     356   |
 | 7     2     9     | a56  ah46    3     | 145   15    8     |
 *-------------------+--------------------+-------------------|
 |d359   7     8     |  4     29    6     | 1235  1235  135   |
 |c369  c369   1     | b579   279   579   | 8     236   4     |
 | 2     56    4     |  3     8     1     | 7     9     56    |
 *-------------------+--------------------+-------------------|
 | 135   35    27    |  8    g37    4     | 6     1235  9     |
 |e1369  4     36    |  169   5     2     | 13    8     7     |
 | 8    f3569  27    |  1679 g3679 g79    | 1235  4     135   |
 *------------------------------------------------------------*


(9=57)r13c45 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5 => -9 r1c7 ; stte


Not to select Steve out for special punishment (given the 'other' thread), but I was made aware of this solution by professor Eleven as part of a (rejected) notation homework assignment: What really caught my interest was the opening move.

If I am interpreting it correctly the full ALS is candidates 4,5,6,7,9 in cells r13c45. At first glance the move breaks the rules of the use of an ALS whereby all target candidates of the ALS (in this case 57) must 'see' all likewise candidates in the ALS: Here there is a 7 in r1c5 which doesn't 'see' cell r5c4.

On the other hand, my guess is that Steve's logic is that if 'not (9)r1c45' then that leaves 7 in r1c4 which must leave 4 in r1c5 so the 7 in r1c5 is not operative and can be disregarded as far as the ALS target is concerned. If I'm guessing Steve's logic correctly then there's something potentially clever about the premise, but I'm not sure the logic is accurate.


That was, indeed, my logic. Given the discussion in the other thread, I think that in the future I will write the opening move as (9=4567)r13c45. However, I can't see any confusion about the rest of the logic. Surely if we eliminate the 9 from the ALS we are left with a locked set, and surely we then know that the positions of the 5 and 7 are in c4. In fact, we know where each of the candidates in the LS must be. Am I missing something here?
Steve
User avatar
SteveG48
2017 Supporter
 
Posts: 2017
Joined: 08 November 2013
Location: Orlando, Florida

Re: January 5, 2015

Postby JC Van Hay » Tue Jan 06, 2015 9:36 pm

Here is how I would write Steve's solution : either as a forbidding matrix or as a more or less condensed AIC-like network.
Code: Select all
+-------------------+---------------------+-----------------+
| 36    1       356 | (79)   (479)   8    | 4-9   356   2   |
| 4     8       356 | 2      1       5-9  | 359   7     356 |
| 7     2       9   | (56)   (46)    3    | 145   15    8   |
+-------------------+---------------------+-----------------+
| 359   7       8   | 4      29      6    | 1235  1235  135 |
| 369   36(9)   1   | (579)  279     579  | 8     236   4   |
| 2     56      4   | 3      8       1    | 7     9     56  |
+-------------------+---------------------+-----------------+
| 135   35      27  | 8      (37)    4    | 6     1235  9   |
| 1369  4       36  | 169    5       2    | 13    8     7   |
| 8     356(9)  27  | 1679   (3679)  (79) | 1235  4     135 |
+-------------------+---------------------+-----------------+
9r1c4=7r1c4
9r1c5=7r1c5=4r1c5
            4r3c5=6r3c5
                  6r3c4=5r3c4
      7r5c4=============5r5c4=9r5c4
                              9r5c2=9r9c2 ... instead of 9r5c12=9r4c1-9r8c1=9r9c2
                                    9r9c6=7r9c6
                                          7r7c5=3r7c5
                  6r9c5=============9r9c5=7r9c5=3r9c5

Conclusion : [9r1c4==9r1c5]-9r1c7.r2c6
which can be read as such, like an nrczt-chain, or as
Code: Select all
   [NP(97)r1c45=4r1c5-(4=6)r3c5-(6=5)r3c4-(5=*7)r5c4-(7=9)r1c4]=*9r5c4-9r5c2=9r9c2-9r9c56=NT(736)r9c6.r79c5-(6=4)r3c5-4r1c5=NP(79)r1c45 :=> [9r1c4==9r1c5]-9r1c7.r2c6
Death Blossom[NP(97)r1c45=4r1c5-(4=6)r3c5-6r3c4=*NT(579)r351c4]=*9r5c4-9r5c2=9r9c2-9r9c56=NT(736)r9c6.r79c5-(6=4)r3c5-4r1c5=NP(79)r1c45 :=> [9r1c4==9r1c5]-9r1c7.r2c6
Death Blossom[NP(97)r1c45=4r1c5-(4=6)r3c5-6r3c4=*NT(579)r351c4]=*9r5c4-9r5c2=9r9c2-9r9c56=NT(736)r9c6.r79c5-6r3c5=NT(479)r3c5.r1c45 :=> [9r1c4==9r1c5]-9r1c7.r2c6
                                  9r1c45==[7r1c4 AND 5r3c4]-(75=9)r5c4-9r5c2=9r9c2-9r9c56=NT(736)r9c6.r79c5-6r3c5=NT(479)r3c5.r1c45 :=> [9r1c4==9r1c5]-9r1c7.r2c6
....
where == is used to mean a derived SIS.
JC Van Hay
 
Posts: 716
Joined: 22 May 2010

Re: January 5, 2015

Postby eleven » Tue Jan 06, 2015 9:37 pm

DonM wrote:Not to select Steve out for special punishment (given the 'other' thread), but I was made aware of this solution by professor Eleven as part of a (rejected) notation homework assignment

Don, i really did not want you to make trivial things, but to compare the notations in a real-life chain:
(9=57)r13c45-(57=9)r5c4...-- (6=9)r1c45,r3c5 => -9 r1c7
Classical e.g.
(469=57)r13c45-(57=9)r5c4...- (379=6)r7c5,r9c56-(6=479)r1c45,r3c5 => -9 r1c7 or
(9=4567)r13c45-(57=9)r5c4...- (39=76)r7c5,r9c56-(476=9)r1c45,r3c5 => -9 r1c7
In both cases you need the grid to verify, where the ALS candidates are to follow the deduction.
To check the link, you have to look at the cell candidates (and count them) in both cases too.
In the classical notation it is arbitrary, on which side you put the unused candidates. So in the first link you can have them with the 9, which makes it harder to see the conclusion, or with the 57, which makes it harder to understand the following weak link. So for more clararity it might be best to put them in braces, if you want.

btw I think, that it is out of question, that the logic is correct here.

Added: JC, are you joking ?
eleven
 
Posts: 1585
Joined: 10 February 2008

Re: January 5, 2015

Postby DonM » Tue Jan 06, 2015 10:23 pm

eleven wrote:
DonM wrote:Not to select Steve out for special punishment (given the 'other' thread), but I was made aware of this solution by professor Eleven as part of a (rejected) notation homework assignment

Don, i really did not want you to make trivial things, but to compare the notations in a real-life chain:
(9=57)r13c45-(57=9)r5c4...-- (6=9)r1c45,r3c5 => -9 r1c7
Classical e.g.
(469=57)r13c45-(57=9)r5c4...- (379=6)r7c5,r9c56-(6=479)r1c45,r3c5 => -9 r1c7 or
(9=4567)r13c45-(57=9)r5c4...- (39=76)r7c5,r9c56-(476=9)r1c45,r3c5 => -9 r1c7
In both cases you need the grid to verify, where the ALS candidates are to follow the deduction.
To check the link, you have to look at the cell candidates (and count them) in both cases too.
In the classical notation it is arbitrary, on which side you put the unused candidates. So in the first link you can have them with the 9, which makes it harder to see the conclusion, or with the 57, which makes it harder to understand the following weak link. So for more clararity it might be best to put them in braces, if you want.

btw I think, that it is out of question, that the logic is correct here.

Added: JC, are you joking ?


To answer you regarding the notation above, it may seem arbitrary on which side you put the unused candidates, but IMO, it isn't if one is trying to keep as close as possible to the typical simple AIC chain structure whereby the starting digit of the strong link and the final digit (at the end of the final strong link) are both the target digit.

Thus, while both formats you give above are logically correct, the second fomat (9=4567)r13c45-(57=9)r5c4...- (39=76)r7c5,r9c56-(476=9)r1c45,r3c5 => -9 r1c7 is IMO more appropriate because the target 9 is what begins and ends the AIC. It makes it very clear to the reader what the objective is.

Otherwise, I don't understand why you find any of this confusing. Anyone who understands ALS patterns will be able to follow the logic present in the format above. Plus, I think we all refer to the grid to understand someone else's solution no matter what patterns are used. Still, perhaps ad nauseum, I emphasize that all components of an ALS need to be notated.

I actually tend to believe that Steve's logic is correct. The fact is that I likely would have missed the ALS move because of the group (7)r1c45 and I wanted to make sure that it is valid so I can keep an eye out for the same construct in the future. So, very clever Steve! A move like that often seems simple and can be taken for granted after it is made, but it actually is pretty difficult to pick up manually.

BTW: I was also going to ask JC if he was serious.
DonM
2013 Supporter
 
Posts: 475
Joined: 13 January 2008

Re: January 5, 2015

Postby daj95376 » Wed Jan 07, 2015 12:35 am

SteveG48 wrote:
Code: Select all
 *------------------------------------------------------------*
 | 36    1     356   |ah79  ah479   8     | 4-9   356   2     |
 | 4     8     356   |  2     1     59    | 359   7     356   |
 | 7     2     9     | a56  ah46    3     | 145   15    8     |
 *-------------------+--------------------+-------------------|
 |d359   7     8     |  4     29    6     | 1235  1235  135   |
 |c369  c369   1     | b579   279   579   | 8     236   4     |
 | 2     56    4     |  3     8     1     | 7     9     56    |
 *-------------------+--------------------+-------------------|
 | 135   35    27    |  8    g37    4     | 6     1235  9     |
 |e1369  4     36    |  169   5     2     | 13    8     7     |
 | 8    f3569  27    |  1679 g3679 g79    | 1235  4     135   |
 *------------------------------------------------------------*


(9=57)r13c45 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5 => -9 r1c7 ; stte

Congratulations for turning the ALS world on its ear with a compound elimination!!! Here's my interpretation of your results:

Code: Select all
(9)r1c45 =ALS= (7)r1c4 -  \
               (5)r3c4 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5
               (4)r1c5
               (6)r3c5

=>  -9 r1c7,r2c6

_

[Edit: removed (incorrect) lasso reference.]
Last edited by daj95376 on Wed Jan 07, 2015 1:33 am, edited 1 time in total.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: January 5, 2015

Postby SteveG48 » Wed Jan 07, 2015 12:41 am

Thanks, Danny. I should have seen that second elimination. I keep telling myself that I'll stop doing that, but.....
Steve
User avatar
SteveG48
2017 Supporter
 
Posts: 2017
Joined: 08 November 2013
Location: Orlando, Florida

Re: January 5, 2015

Postby DonM » Wed Jan 07, 2015 4:15 am

My apologies, but I realize that I misspoke above regarding the notation that I would use for Steve's chain. The answer I gave is not what I even use myself. When it comes to a chain containing ALS patterns, my preference has always been to have the 'body' of the ALS at the right since that seems to fit with right-to-left logic flow of the pattern: if not a, then bcde.

So, in Steve's chain, I would have used:
(9=4567)r13c45-(57=9)r5c4........-(6=479)r1c45,r3c5 => -9 r1c7
DonM
2013 Supporter
 
Posts: 475
Joined: 13 January 2008

Next

Return to Puzzles