- Code: Select all
*-----------*
|.1.|...|..2|
|4..|21.|.7.|
|7.9|..3|...|
|---+---+---|
|.78|4.6|...|
|..1|...|8..|
|...|3.1|79.|
|---+---+---|
|...|8..|6.9|
|.4.|.52|..7|
|8..|...|.4.|
*-----------*
Play/Print this puzzle online
*-----------*
|.1.|...|..2|
|4..|21.|.7.|
|7.9|..3|...|
|---+---+---|
|.78|4.6|...|
|..1|...|8..|
|...|3.1|79.|
|---+---+---|
|...|8..|6.9|
|.4.|.52|..7|
|8..|...|.4.|
*-----------*
*------------------------------------------------------------------------*
| 36 1 356 | 79 479 8 | 49 356 2 |
| 4 8 356 | 2 1 a59 | 359 7 356 |
| 7 2 9 |b56 46 3 | 145 15 8 |
|-----------------------+------------------------+-----------------------|
| 359 7 8 | 4 29 6 | 1235 1235 135 |
| 369 369 1 | 579 279 579 | 8 236 4 |
| 2 56 4 | 3 8 1 | 7 9 56 |
|-----------------------+------------------------+-----------------------|
| 135 35 27 | 8 3-7 4 | 6 1235 9 |
| 1369 4 36 |c169 5 2 | 13 8 7 |
| 8 3569 2-7 |c1679 369-7 ca79 | 1235 4 135 |
*-----------------------------------------------------------------------*
*------------------------------------------------------------*
| 36 1 356 |ah79 ah479 8 | 4-9 356 2 |
| 4 8 356 | 2 1 59 | 359 7 356 |
| 7 2 9 | a56 ah46 3 | 145 15 8 |
*-------------------+--------------------+-------------------|
|d359 7 8 | 4 29 6 | 1235 1235 135 |
|c369 c369 1 | b579 279 579 | 8 236 4 |
| 2 56 4 | 3 8 1 | 7 9 56 |
*-------------------+--------------------+-------------------|
| 135 35 27 | 8 g37 4 | 6 1235 9 |
|e1369 4 36 | 169 5 2 | 13 8 7 |
| 8 f3569 27 | 1679 g3679 g79 | 1235 4 135 |
*------------------------------------------------------------*
36 1 356 | 79 479 8 | 49 356 2
4 8 356 | 2 1 b59 | 359 7 356
7 2 9 |a56 4-6 3 | 145 15 8
------------------------+----------------------+---------------------
g359 7 8 | 4 h29 6 | 1235 1235 135
369 369 1 | 579 279 579 | 8 236 4
2 f56 4 | 3 8 1 | 7 9 56
------------------------+----------------------+---------------------
135 e35 27 | 8 d37 4 | 6 1235 9
1369 4 36 | 19-6 5 2 | 13 8 7
8 3569 27 | 179-6 3679 c79 | 1235 4 135
(6=5)r3c4 - (5=9)r2c6 - (9=7)r9c6 - (7=3)r7c5 - (3=5)r7c2 - r6c2 = (5-9)r4c1 = r4c5-(9=6)r9c5 => -6 r3c5, r8c4, r9c4; stte
\ _________\ ____________________________________________ /
+-----------------+---------------------+-----------------+
| 36 1 356 | 79 479 8 | 49 356 2 |
| 4 8 356 | 2 1 (59) | 359 7 356 |
| 7 2 9 | (56) 4(6) 3 | 145 15 8 |
+-----------------+---------------------+-----------------+
| 359 7 8 | 4 29 6 | 1235 1235 135 |
| 369 369 1 | 579 279 579 | 8 236 4 |
| 2 56 4 | 3 8 1 | 7 9 56 |
+-----------------+---------------------+-----------------+
| 135 35 27 | 8 (37) 4 | 6 1235 9 |
| 1369 4 36 | 169 5 2 | 13 8 7 |
| 8 3569 27 | 1679 9-37(6) (79) | 1235 4 135 |
+-----------------+---------------------+-----------------+
[6r9c5=6r3c5 - (6=59)r3c4.r2c6 - (9=73)r9c6.r7c5] - (73)r9c5; stte
SteveG48 wrote:
- Code: Select all
*------------------------------------------------------------*
| 36 1 356 |ah79 ah479 8 | 4-9 356 2 |
| 4 8 356 | 2 1 59 | 359 7 356 |
| 7 2 9 | a56 ah46 3 | 145 15 8 |
*-------------------+--------------------+-------------------|
|d359 7 8 | 4 29 6 | 1235 1235 135 |
|c369 c369 1 | b579 279 579 | 8 236 4 |
| 2 56 4 | 3 8 1 | 7 9 56 |
*-------------------+--------------------+-------------------|
| 135 35 27 | 8 g37 4 | 6 1235 9 |
|e1369 4 36 | 169 5 2 | 13 8 7 |
| 8 f3569 27 | 1679 g3679 g79 | 1235 4 135 |
*------------------------------------------------------------*
(9=57)r13c45 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5 => -9 r1c7 ; stte
DonM wrote:SteveG48 wrote:
- Code: Select all
*------------------------------------------------------------*
| 36 1 356 |ah79 ah479 8 | 4-9 356 2 |
| 4 8 356 | 2 1 59 | 359 7 356 |
| 7 2 9 | a56 ah46 3 | 145 15 8 |
*-------------------+--------------------+-------------------|
|d359 7 8 | 4 29 6 | 1235 1235 135 |
|c369 c369 1 | b579 279 579 | 8 236 4 |
| 2 56 4 | 3 8 1 | 7 9 56 |
*-------------------+--------------------+-------------------|
| 135 35 27 | 8 g37 4 | 6 1235 9 |
|e1369 4 36 | 169 5 2 | 13 8 7 |
| 8 f3569 27 | 1679 g3679 g79 | 1235 4 135 |
*------------------------------------------------------------*
(9=57)r13c45 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5 => -9 r1c7 ; stte
Not to select Steve out for special punishment (given the 'other' thread), but I was made aware of this solution by professor Eleven as part of a (rejected) notation homework assignment: What really caught my interest was the opening move.
If I am interpreting it correctly the full ALS is candidates 4,5,6,7,9 in cells r13c45. At first glance the move breaks the rules of the use of an ALS whereby all target candidates of the ALS (in this case 57) must 'see' all likewise candidates in the ALS: Here there is a 7 in r1c5 which doesn't 'see' cell r5c4.
On the other hand, my guess is that Steve's logic is that if 'not (9)r1c45' then that leaves 7 in r1c4 which must leave 4 in r1c5 so the 7 in r1c5 is not operative and can be disregarded as far as the ALS target is concerned. If I'm guessing Steve's logic correctly then there's something potentially clever about the premise, but I'm not sure the logic is accurate.
+-------------------+---------------------+-----------------+
| 36 1 356 | (79) (479) 8 | 4-9 356 2 |
| 4 8 356 | 2 1 5-9 | 359 7 356 |
| 7 2 9 | (56) (46) 3 | 145 15 8 |
+-------------------+---------------------+-----------------+
| 359 7 8 | 4 29 6 | 1235 1235 135 |
| 369 36(9) 1 | (579) 279 579 | 8 236 4 |
| 2 56 4 | 3 8 1 | 7 9 56 |
+-------------------+---------------------+-----------------+
| 135 35 27 | 8 (37) 4 | 6 1235 9 |
| 1369 4 36 | 169 5 2 | 13 8 7 |
| 8 356(9) 27 | 1679 (3679) (79) | 1235 4 135 |
+-------------------+---------------------+-----------------+
9r1c4=7r1c4
9r1c5=7r1c5=4r1c5
4r3c5=6r3c5
6r3c4=5r3c4
7r5c4=============5r5c4=9r5c4
9r5c2=9r9c2 ... instead of 9r5c12=9r4c1-9r8c1=9r9c2
9r9c6=7r9c6
7r7c5=3r7c5
6r9c5=============9r9c5=7r9c5=3r9c5
Conclusion : [9r1c4==9r1c5]-9r1c7.r2c6
[NP(97)r1c45=4r1c5-(4=6)r3c5-(6=5)r3c4-(5=*7)r5c4-(7=9)r1c4]=*9r5c4-9r5c2=9r9c2-9r9c56=NT(736)r9c6.r79c5-(6=4)r3c5-4r1c5=NP(79)r1c45 :=> [9r1c4==9r1c5]-9r1c7.r2c6
Death Blossom[NP(97)r1c45=4r1c5-(4=6)r3c5-6r3c4=*NT(579)r351c4]=*9r5c4-9r5c2=9r9c2-9r9c56=NT(736)r9c6.r79c5-(6=4)r3c5-4r1c5=NP(79)r1c45 :=> [9r1c4==9r1c5]-9r1c7.r2c6
Death Blossom[NP(97)r1c45=4r1c5-(4=6)r3c5-6r3c4=*NT(579)r351c4]=*9r5c4-9r5c2=9r9c2-9r9c56=NT(736)r9c6.r79c5-6r3c5=NT(479)r3c5.r1c45 :=> [9r1c4==9r1c5]-9r1c7.r2c6
9r1c45==[7r1c4 AND 5r3c4]-(75=9)r5c4-9r5c2=9r9c2-9r9c56=NT(736)r9c6.r79c5-6r3c5=NT(479)r3c5.r1c45 :=> [9r1c4==9r1c5]-9r1c7.r2c6
....
where == is used to mean a derived SIS.
DonM wrote:Not to select Steve out for special punishment (given the 'other' thread), but I was made aware of this solution by professor Eleven as part of a (rejected) notation homework assignment
eleven wrote:DonM wrote:Not to select Steve out for special punishment (given the 'other' thread), but I was made aware of this solution by professor Eleven as part of a (rejected) notation homework assignment
Don, i really did not want you to make trivial things, but to compare the notations in a real-life chain:
(9=57)r13c45-(57=9)r5c4...-- (6=9)r1c45,r3c5 => -9 r1c7
Classical e.g.
(469=57)r13c45-(57=9)r5c4...- (379=6)r7c5,r9c56-(6=479)r1c45,r3c5 => -9 r1c7 or
(9=4567)r13c45-(57=9)r5c4...- (39=76)r7c5,r9c56-(476=9)r1c45,r3c5 => -9 r1c7
In both cases you need the grid to verify, where the ALS candidates are to follow the deduction.
To check the link, you have to look at the cell candidates (and count them) in both cases too.
In the classical notation it is arbitrary, on which side you put the unused candidates. So in the first link you can have them with the 9, which makes it harder to see the conclusion, or with the 57, which makes it harder to understand the following weak link. So for more clararity it might be best to put them in braces, if you want.
btw I think, that it is out of question, that the logic is correct here.
Added: JC, are you joking ?
SteveG48 wrote:
- Code: Select all
*------------------------------------------------------------*
| 36 1 356 |ah79 ah479 8 | 4-9 356 2 |
| 4 8 356 | 2 1 59 | 359 7 356 |
| 7 2 9 | a56 ah46 3 | 145 15 8 |
*-------------------+--------------------+-------------------|
|d359 7 8 | 4 29 6 | 1235 1235 135 |
|c369 c369 1 | b579 279 579 | 8 236 4 |
| 2 56 4 | 3 8 1 | 7 9 56 |
*-------------------+--------------------+-------------------|
| 135 35 27 | 8 g37 4 | 6 1235 9 |
|e1369 4 36 | 169 5 2 | 13 8 7 |
| 8 f3569 27 | 1679 g3679 g79 | 1235 4 135 |
*------------------------------------------------------------*
(9=57)r13c45 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5 => -9 r1c7 ; stte
(9)r1c45 =ALS= (7)r1c4 - \
(5)r3c4 - (57=9)r5c4 - r5c12 = r4c1 - r8c1 = r9c2 - (9=6)r7c5,r9c56 - (6=9)r1c45,r3c5
(4)r1c5
(6)r3c5
=> -9 r1c7,r2c6