- Code: Select all
*-----------*
|53.|.9.|6.2|
|..8|...|..1|
|1..|..3|.5.|
|---+---+---|
|..7|8.9|...|
|2..|.5.|..9|
|...|2.7|4..|
|---+---+---|
|.2.|5..|..8|
|9..|...|1..|
|4.1|.7.|.63|
*-----------*
Play/Print this puzzle online
*-----------*
|53.|.9.|6.2|
|..8|...|..1|
|1..|..3|.5.|
|---+---+---|
|..7|8.9|...|
|2..|.5.|..9|
|...|2.7|4..|
|---+---+---|
|.2.|5..|..8|
|9..|...|1..|
|4.1|.7.|.63|
*-----------*
*--------------------------------------------------------------*
| 5 3 4 |e17 9 d18 | 6 78 2 |
| 67 679 8 | 467 2 5 | 3 49 1 |
| 1 679 2 | 467 c468 3 | 789 5 47 |
|--------------------+--------------------+--------------------|
| 36 145 7 | 8 1346 9 | 2 13 56 |
| 2 14 36 |f146-3 5 146 | 78 78 9 |
| 8 15 9 | 2 136 7 | 4 13 56 |
|--------------------+--------------------+--------------------|
| 367 2 36 | 5 146 146 | 79 49 8 |
| 9 67 5 |a346 b3468 468 | 1 2 47 |
| 4 8 1 | 9 7 2 | 5 6 3 |
*--------------------------------------------------------------*
*------------------------------------------------------------*
| 5 3 4 | b17 9 b18 | 6 78 2 |
| 67 679 8 | b467 2 5 | 3 49 1 |
| 1 679 2 | b467 468 3 | 789 5 47 |
*-------------------+--------------------+-------------------|
| 36 145 7 | 8 1346 9 | 2 13 56 |
| 2 14 36 | 1346 5 146 | 78 78 9 |
| 8 15 9 | 2 136 7 | 4 13 56 |
*-------------------+--------------------+-------------------|
| 367 2 36 | 5 146 146 | 79 49 8 |
| 9 67 5 | 3-46 a3468 a468 | 1 2 47 |
| 4 8 1 | 9 7 2 | 5 6 3 |
*------------------------------------------------------------*
SteveG48 wrote:(46=8)r8c56 - (8=46)r123c4,r1c6 => -46 r8c4
eleven wrote:SteveG48 wrote:(46=8)r8c56 - (8=46)r123c4,r1c6 => -46 r8c4
Nice example, how confusing this notation can be.
I see (46=8)r8c56, look at the grid, see, that if the the 2 cells don't have 46, then 3 must be in r8c5 and 8 in r8c6, so it looks correct.
Then i see that the 8's are conjugate in the 2 cells, so there must be an 8 there and the left side is false. Therefore r8c5=3 and r8c6=8
In fact, if r8c56 is not 46 or 64, it still can be 34, 36, 38, 48, 68, 84 or 86.
eleven wrote:SteveG48 wrote:(46=8)r8c56 - (8=46)r123c4,r1c6 => -46 r8c4
Nice example, how confusing this notation can be.
I see (46=8)r8c56, look at the grid, see, that if the the 2 cells don't have 46, then 3 must be in r8c5 and 8 in r8c6, so it looks correct.
Then i see that the 8's are conjugate in the 2 cells, so there must be an 8 there and the left side is false. Therefore r8c5=3 and r8c6=8
In fact, if r8c56 is not 46 or 64, it still can be 34, 36, 38, 48, 68, 84 or 86.
*-----------------------------------------------------------*
| 5 3 4 |a17 9 a18 | 6 78 2 |
| 67 679 8 |a467 2 5 | 3 49 1 |
| 1 679 2 |a467 468 3 | 789 5 47 |
|-------------------+-------------------+-------------------|
| 36 145 7 | 8 1346 9 | 2 13 56 |
| 2 14 36 | 1346 5 146 | 78 78 9 |
| 8 15 9 | 2 136 7 | 4 13 56 |
|-------------------+-------------------+-------------------|
| 367 2 36 | 5 b146 b146 | 79 49 8 |
| 9 67 5 | 3-46 3468 b468 | 1 2 47 |
| 4 8 1 | 9 7 2 | 5 6 3 |
*-----------------------------------------------------------*
(46=718)r123c4,r1c6-(18=46)r78c6,r7c5 => -46r8c4; ste
*-----------------------------------------------------------------------*
| 5 3 4 |b17 9 b18 | 6 78 2 |
| 67 679 8 |b467 2 5 | 3 49 1 |
| 1 679 2 |b467 468 3 | 789 5 47 |
|-----------------------+-----------------------+-----------------------|
| 36 145 7 | 8 1346 9 | 2 13 56 |
| 2 14 36 | 1346 5 146 | 78 78 9 |
| 8 15 9 | 2 136 7 | 4 13 56 |
|-----------------------+-----------------------+-----------------------|
| 367 2 36 | 5 146 146 | 79 49 8 |
| 9 a67 5 | 3-46 3468 a468 | 1 2 a47 |
| 4 8 1 | 9 7 2 | 5 6 3 |
*-----------------------------------------------------------------------*
daj95376 wrote:However, initially assuming two values not true does not allow him to conclude r8c4<>46.
Then, It would have been less confusing to write :SteveG48 wrote:daj95376 wrote:However, initially assuming two values not true does not allow him to conclude r8c4<>46.
Ordinarily, no. However, if neither of r8c56 is a 4 or a 6, then the conclusion that r23c4 is a 46 pair holds. On the other hand, if either of r8c56 is either a 4 or 6, then the other must be an 8, and r8c5 cannot be a 3. That leaves a 3 in r8c4, proving the result. I agree that the notation is questionable (at least!).
daj95376 wrote: I'm not sure that I like Leren's representation, either
(46 )r8c56 - (46)r8c4
||
(46=38)r8c56 - (8=1746)r1c46,r23c4 - (46)r8c4 [SteveG48]
+---------------------------------------------------------------+
| 5 3 4 | a17 9 b18 | 6 78 2 |
| 67 679 8 | a467 2 5 | 3 49 1 |
| 1 679 2 | a467 468 3 | 789 5 47 |
|--------------------+---------------------+--------------------|
| 36 145 7 | 8 1346 9 | 2 13 56 |
| 2 14 36 | 1346 5 146 | 78 78 9 |
| 8 15 9 | 2 136 7 | 4 13 56 |
|--------------------+---------------------+--------------------|
| 367 2 36 | 5 146 146 | 79 49 8 |
| 9 c67 5 | da346 3468 c468 | 1 2 c47 |
| 4 8 1 | 9 7 2 | 5 6 3 |
+---------------------------------------------------------------+
# 58 eliminations remain
discontinuous loop => r8c4=3
(3=1467)r1238c4 - (1=8)r1c6 - (8=467)r8c269 - (46=3)r8c4