January 29, 2020

Post puzzles for others to solve here.

January 29, 2020

Postby tarek » Wed Jan 29, 2020 7:44 am

Code: Select all
+-------+-------+-------+
| . . 5 | . 1 . | 2 . . |
| 8 . . | . . . | 7 1 9 |
| 2 . . | 9 . . | . 4 . |
+-------+-------+-------+
| 9 . 6 | 3 8 . | . . . |
| . . . | . . . | . . . |
| 3 . 8 | 5 4 . | . . . |
+-------+-------+-------+
| 1 . . | 4 . . | . 5 . |
| 5 . . | . . . | 6 3 4 |
| . . 3 | . 2 . | 1 . . |
+-------+-------+-------+
..5.1.2..8.....7192..9...4.9.638.............3.854....1..4...5.5.....634..3.2.1..

Play this puzzle online

Download Sukaku Explainer
User avatar
tarek
 
Posts: 3762
Joined: 05 January 2006

Re: January 29, 2020

Postby Ajò Dimonios » Wed Jan 29, 2020 8:19 am

Code: Select all
+--------------+-----------------+-------------+
| 67 9     5   | 678  1    4     | 2 68   3    |
| 8  36    4   | 26   5    236   | 7 1    9    |
| 2  1367  17  | 9    367  3678  | 5 4    68   |
+--------------+-----------------+-------------+
| 9  1257  6   | 3    8    127   | 4 27   15   |
| 47 12457 127 | 1267 679  12679 | 3 2678 1568 |
| 3  127   8   | 5    4    1267  | 9 267  16   |
+--------------+-----------------+-------------+
| 1  67    79  | 4    3679 3679  | 8 5    2    |
| 5  278   279 | 178  79   1789  | 6 3    4    |
| 46 468   3   | 68   2    5     | 1 9    7    |
+--------------+-----------------+-------------+


8r8c2=8r8c46=8r9c4-(8=4)r9c2-(4=6)r9c1-6r1c1=6r1c8-(6=8)r3c9-8r3c6=>-8r8c6=>stte

or

Solution for common candidate of two conjugated tracks:

P(4r9c1) : (4-6)r9c1=6r1c1-(6=8)r1c8
P(6r9c1): (6-4)r9c1=(4-8)r9c2=8r9c4-8r1c4=8r1c8=>8r1c8=>stte
Last edited by Ajò Dimonios on Wed Jan 29, 2020 9:37 am, edited 2 times in total.
Ajò Dimonios
 
Posts: 213
Joined: 07 November 2019

Re: January 29, 2020

Postby Leren » Wed Jan 29, 2020 8:33 am

Code: Select all
*-----------------------------------------------*
|b67 9     5   | 67-8 1    4     | 2 a68   3    |
| 8  36    4   | 26   5    236   | 7  1    9    |
| 2  1367  17  | 9    367  3678  | 5  4    68   |
|--------------+-----------------+--------------|
| 9  1257  6   | 3    8    127   | 4  27   15   |
| 47 12457 127 | 1267 679  12679 | 3  2678 1568 |
| 3  127   8   | 5    4    1267  | 9  267  16   |
|--------------+-----------------+--------------|
| 1  67    79  | 4    3679 3679  | 8  5    2    |
| 5  278   279 | 178  79   1789  | 6  3    4    |
|c46 468   3   |d68   2    5     | 1  9    7    |
*-----------------------------------------------*

W Wing : (8=6) r1c8 - r1c1 = r9c1 - (6=8) r9c4 => - 8 r1c4; stte

Leren
Leren
 
Posts: 5118
Joined: 03 June 2012

Re: January 29, 2020

Postby rjamil » Wed Jan 29, 2020 12:56 pm

Code: Select all
 +------------------+--------------------+---------------+
 | (67)  9      5   | (678)  1     4     | 2  8-6   3    |
 | 8     36     4   | 26     5     236   | 7  1     9    |
 | 2     1367   17  | 9      367   3678  | 5  4     68   |
 +------------------+--------------------+---------------+
 | 9     1257   6   | 3      8     127   | 4  27    15   |
 | 47    12457  127 | 1267   679   12679 | 3  2678  1568 |
 | 3     127    8   | 5      4     1267  | 9  267   16   |
 +------------------+--------------------+---------------+
 | 1     67     79  | 4      3679  3679  | 8  5     2    |
 | 5     278    279 | 178    79    1789  | 6  3     4    |
 | 4(6)  468    3   | (68)   2     5     | 1  9     7    |
 +------------------+--------------------+---------------+

XYZ-Hybrid: 678 @ r1c14 r9c4 Column wise Hybrid 6 @ r9c1 => -6 @ r1c8; stte

R. Jamil
rjamil
 
Posts: 774
Joined: 15 October 2014
Location: Karachi, Pakistan

Re: January 29, 2020

Postby Mauriès Robert » Wed Jan 29, 2020 3:45 pm

Hi all,
My resolution with an anti-track:
P'(8r9c4): -8r9c4->6r9c4->6r1c1->8r1c8 => -8r1c4, stte
Can the corresponding AIC be written as follows: (8=6)r9c4-6r9c1=6r1c1-(6=8)r1c8 =>-8r1c4?
Robert
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France

Re: January 29, 2020

Postby Ngisa » Wed Jan 29, 2020 4:55 pm

Code: Select all
+---------------------+-----------------------+--------------------+
|f67     9        5   | 678     1       4     | 2    e68      3    |
| 8      36       4   | 26      5       236   | 7     1       9    |
| 2      1367     17  | 9       367     3678  | 5     4      d68   |
+---------------------+-----------------------+--------------------+
| 9      1257     6   | 3       8       127   | 4     27      15   |
|a47    b12457    127 | 1267    679     12679 | 3     2678   c1568 |
| 3      127      8   | 5       4       1267  | 9     267     16   |
+---------------------+-----------------------+--------------------+
| 1      67       79  | 4       3679    3679  | 8     5       2    |
| 5      278      279 | 178     79      1789  | 6     3       4    |
|g6-4    468      3   | 68      2       5     | 1     9       7    |
+---------------------+-----------------------+--------------------+

(4)r5c1 = (4-5)r5c2 = (5-8)r5c9 = r3c9 - (8=6)r1c8 - r1c1 = (6)r9c1 => - 4r9c1; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: January 29, 2020

Postby Cenoman » Wed Jan 29, 2020 5:19 pm

Mauriès Robert wrote:P'(8r9c4): -8r9c4->6r9c4->6r1c1->8r1c8 => -8r1c4, stte
Can the corresponding AIC be written as follows: (8=6)r9c4-6r9c1=6r1c1-(6=8)r1c8 =>-8r1c4?
Robert

Hi Robert,
It is maybe not very clearly stated in the Eureka page here (don't know which is your reference ?), that the digits need not to be repeated when they don't change.
In the same way that Sudopedia states:
There is no need to repeat the cell name when multiple candidates of that cell are used in the chain.
, the following principle for writing AICs is generally practised:
There is no need to repeat the digit symbol when the same digit is used in sequencing terms in the chain, (except in endpoints).

This way, digits are always between parentheses, and only digits are. This avoid confusing them with node coordinates. This is true even in endpoints.

I used a complex way to say that, in your chain (8=6)r9c4-6r9c1=6r1c1-(6=8)r1c8 =>-8r1c4, you can drop the 6 in front of r9c1 and r1c1.
Then you get (8=6)r9c4-r9c1=r1c1-(6=8)r1c8 =>-8r1c4, i.e. exactly Leren's W-wing.

On this forum (not a Eureka rule) we are used to adding blanks around isolated link symbols '=' and '-' (by isolated I mean "not inside parentheses"). It makes the chains easier to read.

Thus (8=6)r9c4 - r9c1 = r1c1 - (6=8)r1c8 => -8 r1c4; stte would be the major practise .
Fortunately, this recommandation is exactly Leren's :) (as well as mine...)
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: January 29, 2020

Postby SteveG48 » Wed Jan 29, 2020 7:41 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 7-6    9      5      | 678    1      4      | 2     a68     3      |
 | 8      36     4      | 26     5      236    | 7      1      9      |
 | 2      1367   17     | 9      367    3678   | 5      4     b68     |
 *----------------------+----------------------+----------------------|
 | 9     c1257   6      | 3      8      127    | 4      27    b15     |
 |d47     12457 c127    | 1267   679    12679  | 3      2678   1568   |
 | 3     c127    8      | 5      4      1267   | 9      267   b16     |
 *----------------------+----------------------+----------------------|
 | 1      67     79     | 4      3679   3679   | 8      5      2      |
 | 5      278    279    | 178    79     1789   | 6      3      4      |
 |d46     468    3      | 68     2      5      | 1      9      7      |
 *--------------------------------------------------------------------*


6r1c8 = (615)r346c9 - (5=127)b4p268 - (7=46)r59c1 => -6 r1c1 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4481
Joined: 08 November 2013
Location: Orlando, Florida

Re: January 29, 2020

Postby Mauriès Robert » Wed Jan 29, 2020 10:16 pm

Thank you Cenoman for all these clarifications.
But I notice that not everyone on the forum respects these conventions, that a lot of acronyms and symbols are used, so I'm a bit lost!
Robert
Last edited by Mauriès Robert on Thu Jan 30, 2020 7:39 am, edited 2 times in total.
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France

Re: January 29, 2020

Postby pjb » Wed Jan 29, 2020 10:57 pm

Code: Select all
c67      9       5      |d67-8   1      4      | 2      68     3     
 8       36      4      | 26     5      236    | 7      1      9     
 2       1367    17     | 9      367    3678   | 5      4      68     
------------------------+----------------------+---------------------
 9       1257    6      | 3      8      127    | 4      27     15     
 47      12457   127    | 1267   679    12679  | 3      2678   1568   
 3       127     8      | 5      4      1267   | 9      267    16     
------------------------+----------------------+---------------------
 1       67      79     | 4      3679   3679   | 8      5      2     
 5       278     279    | 178    79     1789   | 6      3      4     
b46      468     3      |a68     2      5      | 1      9      7     

(8=6)r9c4 - r9c1 = (6-7)r1c1 = r1c4 => -8 r1c4; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia


Return to Puzzles