- Code: Select all
*-----------*
|3..|.1.|...|
|...|..4|3.8|
|..2|.8.|..1|
|---+---+---|
|...|8..|2.3|
|1.8|.32|..6|
|.3.|.71|.8.|
|---+---+---|
|.7.|1..|9..|
|...|..7|...|
|.13|45.|...|
*-----------*
Play/Print this puzzle online
*-----------*
|3..|.1.|...|
|...|..4|3.8|
|..2|.8.|..1|
|---+---+---|
|...|8..|2.3|
|1.8|.32|..6|
|.3.|.71|.8.|
|---+---+---|
|.7.|1..|9..|
|...|..7|...|
|.13|45.|...|
*-----------*
*--------------------------------------------------------------------------------*
| 3 8 b79 | 2579 1 Cc5-9e | 6 4 27 |
| 57 a59 1 | 279 6 4 | 3 279 8 |
| 46 46 2 | 79d 8 3 | 57 579c 1 |
|--------------------------+--------------------------+--------------------------|
| 567 A569 79 | 8 4 B59 | 2 1 3 |
| 1 459a 8 | 59 3 2 | 457 57b 6 |
| 2 3 45 | 6 7 1 | 45 8 9 |
|--------------------------+--------------------------+--------------------------|
| 45 7 6 | 1 2 8 | 9 3 45 |
| 8 2 45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 27 27 |
*--------------------------------------------------------------------------------*
Kraken Column 2 Digit 5 :
5 r2c2 - 9 r2c2 = r1c3 - 9 r1c6;
5 r4c2 - r4c6 = r1c6 - 9 r1c6;
5 r5C2 - r5c8 = (5-9) r3c8 = r3c4 - 9 r1c6; => - 9 r1c6; stte
*-----------------------------------------------------------*
| 3 8 a79 | 2579 1 59 | 6 4 f27 |
| 57 b5-9 1 | 279 6 4 | 3 f279 8 |
| 46 46 2 | 79 8 3 |f57 579 1 |
*-------------------+-------------------+-------------------|
| 567 c569 79 | 8 4 59 | 2 1 3 |
| 1 c459 8 | 59 3 2 | 457 57 6 |
| 2 3 d45 | 6 7 1 |e45 8 9 |
*-------------------+-------------------+-------------------|
| 45 7 6 | 1 2 8 | 9 3 45 |
| 8 2 45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 27 27 |
*-----------------------------------------------------------*
+------------+-----------+------------+
| 3 8 79 | 2579 1 59 | 6 4 27 |
| 57 59 1 | 279 6 4 | 3 279 8 |
| 46 46 2 | 79 8 3 | 57 579 1 |
+------------+-----------+------------+
| 567 569 79 | 8 4 59 | 2 1 3 |
| 1 459 8 | 59 3 2 | 457 57 6 |
| 2 3 45 | 6 7 1 | 45 8 9 |
+------------+-----------+------------+
| 45 7 6 | 1 2 8 | 9 3 45 |
| 8 2 45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 27 27 |
+------------+-----------+------------+
+--------------------+---------------+--------------+
| 3 8 7(9) | 2579 1 (59) | 6 4 27 |
| 7(5) (59) 1 | 279 6 4 | 3 279 8 |
| 46 46 2 | 79 8 3 | 57 579 1 |
+--------------------+---------------+--------------+
| 67(5) 69(5) 79 | 8 4 9(5) | 2 1 3 |
| 1 459 8 | 59 3 2 | 457 57 6 |
| 2 3 45 | 6 7 1 | 45 8 9 |
+--------------------+---------------+--------------+
| 4-5 7 6 | 1 2 8 | 9 3 45 |
| 8 2 45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 27 27 |
+--------------------+---------------+--------------+
5r7c1
5r2c1 5r2c2
9r2c2 9r1c3
5r4c1 5r4c2 5r4c6
9r1c6 5r1c6
+------------+-----------+------------+
| 3 8 79 | 2579 1 59 | 6 4 27 |
| 57 59 1 | 279 6 4 | 3 279 8 |
| 46 46 2 | 79 8 3 | 57 579 1 |
+------------+-----------+------------+
| 567 569 79 | 8 4 59 | 2 1 3 |
| 1 459 8 | 59 3 2 | 457 57 6 |
| 2 3 45 | 6 7 1 | 45 8 9 |
+------------+-----------+------------+
| 45 7 6 | 1 2 8 | 9 3 45 |
| 8 2 45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 27 27 |
+------------+-----------+------------+
*-----------------------------------------------------------*
| 3 8 a79 | 257-9 1 5-9 | 6 4 27 |
|a57 59 1 | 279 6 4 | 3 279 8 |
| 46 46 2 |f79 8 3 |f57 579 1 |
|-------------------+-------------------+-------------------|
| 567 569 79 | 8 4 59 | 2 1 3 |
| 1 459 8 | 59 3 2 | 457 57 6 |
| 2 3 d45 | 6 7 1 |e45 8 9 |
|-------------------+-------------------+-------------------|
|b45 7 6 | 1 2 8 | 9 3 45 |
| 8 2 c45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 27 27 |
*-----------------------------------------------------------*
[(9=5)b1p34-r7c1=r8c3-r6c3=r6c7-(5=9)r3c47]-9r1c46; ste
hughwill69 wrote:Being new here I hope I'm not making any faux pas!
...
X wing on 9 r14c36 then 56-4 XYwing pivot r4c2 r3c2<>6
Marty R. wrote:UR (57)r35c78, using externals
7r3c4=5r6c7
5r6c7-(5=79)r3c74-r5c4=r4c6-(9=7)r4c3-(7=95)b1p35
7r3c4-(7=5)r3c7-r56c7=r5c8-(5=94*)r5c42-[4=6*]r3c2-(4=5*)r6c3=> 95r42c2=> 5r2c2
Sorry about the notional mess. That 2nd line is a mess because it's notionally challenging. It can be seen that the asterisked 5&6 set r4c2=9 and r2c2=5
+--------------+------------+---------------+
| 3 8 79 | #2579 1 59 | 6 4 #27 |
| 57 g59 1 | #279 6 4 | 3 #279 8 |
| 46 46 2 | a79 8 3 | b57 579 1 |
+--------------+-------------+---------------+
| 567 f569 79 | 8 4 59 | 2 1 3 |
| 1 fd459 8 | d59 3 2 | c457 d57 6 |
| 2 3 e45 | 6 7 1 | c45 8 9 |
+--------------+-------------+---------------+
| 45 7 6 | 1 2 8 | 9 3 45 |
| 8 2 45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 #27 #27 |
+--------------+------------+---------------+
Marty R. wrote:
- Code: Select all
+------------+-----------+------------+
| 3 8 79 | 2579 1 59 | 6 4 27 |
| 57 59 1 | 279 6 4 | 3 279 8 |
| 46 46 2 | 79 8 3 | 57 579 1 |
+------------+-----------+------------+
| 567 569 79 | 8 4 59 | 2 1 3 |
| 1 459 8 | 59 3 2 | 457 57 6 |
| 2 3 45 | 6 7 1 | 45 8 9 |
+------------+-----------+------------+
| 45 7 6 | 1 2 8 | 9 3 45 |
| 8 2 45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 27 27 |
+------------+-----------+------------+
Play this puzzle online at the Daily Sudoku site
UR (57)r35c78, using externals
7r3c4=5r6c7
5r6c7-(5=79)r3c74-r5c4=r4c6-(9=7)r4c3-(7=95)b1p35
7r3c4-(7=5)r3c7-r56c7=r5c8-(5=94*)r5c42-[4=6*]r3c2-(4=5*)r6c3=> 95r42c2=> 5r2c2
Sorry about the notional mess. That 2nd line is a mess because it's notionally challenging. It can be seen that the asterisked 5&6 set r4c2=9 and r2c2=5
.-----------------.---------------.----------------.
| 3 8 d79 | 2579 1 d59 | 6 4 27 |
| c57 59 1 | 279 6 4 | 3 279 8 |
| b46 a46 2 | 79 8 3 | 57 579 1 |
:-----------------+---------------+----------------:
| 567 569 79 | 8 4 e59 | 2 1 3 |
| 1 59-4 8 | f59 3 2 | f457 f57 6 |
| 2 3 45 | 6 7 1 | 45 8 9 |
:-----------------+---------------+----------------:
| c45 7 6 | 1 2 8 | 9 3 45 |
| 8 2 45 | 3 9 7 | 1 6 45 |
| 9 1 3 | 4 5 6 | 8 27 27 |
'-----------------'---------------'----------------'
SteveG48 wrote:Marty, I like your overall solution, but I don't understand where the UR is needed.
eleven wrote:SteveG48 wrote:Marty, I like your overall solution, but I don't understand where the UR is needed.
You are pretty right, that the UR is not needed. Instead of the UR link 7r3c4=5r6c7 (or 7r3c4=9r2c9) here the direct link (7=9)r3c4 also works.
But the UR links jump into the eye, so why not start with them?
Why should i try (7=9)r3c4 and not one of the other 20 bivalue or 31 bilocation links (if counted right) ? If i would work this way, going from one 2-way link to the next, until i find something, i would leave solving to the programs.
3 8 79 | 2579 1 59 | 6 4 27
57 a59 1 | 279 6 4 | 3 b279 8
46 46 2 | 79 8 3 |d57 c579 1
------------------------+----------------------+---------------------
567 69-5 79 | 8 4 59 | 2 1 3
1 49-5 8 | 59 3 2 | 457 57 6
2 3 f45 | 6 7 1 |e45 8 9
------------------------+----------------------+---------------------
45 7 6 | 1 2 8 | 9 3 45
8 2 45 | 3 9 7 | 1 6 45
9 1 3 | 4 5 6 | 8 27 27
Marty, I like your overall solution, but I don't understand where the UR is needed.
You're first chain could as easily have been: (7=9)r3c4 - r5c4 = r4c6 - r4c3 = 9r1c3.
Now each of your chains results in a 9 in either r1c3 or r4c2, giving your result.
In fact, I would turn around your first chain and write:
9r1c3 = r4c3 - r4c6 = r5c4 - (9=7)r4c4 - (7=5)r3c7 - r56c7 = r5c8 - (5=49)r5c24 - 4r2c2|4r6c3 = 6r2c2&5r6c3 - (56=9)r4c2 => -9 r2c2