One-stepper:
- Code: Select all
+--------------------+-------------------+---------------------+
| 6 1 5 | 7 4 2 | 3 9 8 |
| 7 9 4 | 6 3 8 | 2 5 1 |
| 3 2 8 | 9 5 1 | 6 7 4 |
+--------------------+-------------------+---------------------+
| 5 78 6 | 14 179 49 | 178 2 3 |
| 2 4 9 | 8 167 3 | 157 16 56 |
| 1 378 37 | 2 67 5 | 4 68 9 |
+--------------------+-------------------+---------------------+
| 9 3-5 123 | b14 B128 6 |Aa158z 34 7 |
| 8 h367* 1237 | 5 129 b49 | 19 34 g26* |
| 4 ie56* 12 | 3 Cc1289 7 |Dd1589 168 f256* |
+--------------------+-------------------+---------------------+
Double Kraken cell (158)r7c7 & row (5)r9c279
(1)r7c7 - (1=49)b8p16 - r9c5 = (9-5)r9c7 = [(5)r9c2 = (5-2)r9c9 = (2-6)r8c9 = r8c2 - (6=5)r9c2]
(8)r7c7 - r7c5 = (8-9)r9c5 = (9-5)r9c7 = [(5)r9c2 = (5-2)r9c9 = (2-6)r8c9 = r8c2 - (6=5)r9c2]
(5)r7c7
=> -5 r7c2; ste
Size 9, as shown by the matrix below:
- Code: Select all
5r9c2 6r9c2
6r8c2 6r8c9
2r8c9 2r9c9
5r9c2 5r9c9 5r9c7
9r9c7 9r9c5
8r9c5 8r7c5
5r7c7 8r7c7 1r7c7
1r7c4 4r7c4
9r8c6 4r8c6
Note: this is the matrix of a whip(9), but there exist whips(8), as shown by YZF_Solver
Now a solution in two steps
- Code: Select all
+--------------------+-------------------+---------------------+
| 6 1 5 | 7 4 2 | 3 9 8 |
| 7 9 4 | 6 3 8 | 2 5 1 |
| 3 2 8 | 9 5 1 | 6 7 4 |
+--------------------+-------------------+---------------------+
| 5 78 6 | 14 179 49 | 178 2 3 |
| 2 4 9 | 8 167 3 | 157 16 56 |
| 1 378 37 | 2 67 5 | 4 68 9 |
+--------------------+-------------------+---------------------+
| 9 35 123 | b14 B128 6 |Aa158z 34 7 |
| 8 367 1237 | 5 129 b49 | 19 34 26 |
| 4 56 12 | 3 Cc1289 7 |Dd189-5 168 256 |
+--------------------+-------------------+---------------------+
1. Kraken cell (158)r7c7
(1)r7c7 - (1=49)b8p16 - r9c5 = (9)r9c7
(8)r7c7 - r7c5 = (8-9)r9c5 = (9)r9c7
(5)r7c7
=> -5 r9c7
size 5, as shown by the matrix below:
- Code: Select all
9r9c7 9r9c5
9r8c6 4r8c6
4r7c4 1r7c4
5r7c7 1r7c7 8r7c7
8r9c5 8r7c5
also matrix of a whip(5)
2. W-Wing
(5=6)r5c9 - r8c9 = r8c2 - (6=5)r9c2 => -5 r9c9; ste
Size 3
Total size of the solution: 8
And a krakenless solution (three wings)
- Code: Select all
+--------------------+-------------------+---------------------+
| 6 1 5 | 7 4 2 | 3 9 8 |
| 7 9 4 | 6 3 8 | 2 5 1 |
| 3 2 8 | 9 5 1 | 6 7 4 |
+--------------------+-------------------+---------------------+
| 5 78 6 | 14 179 49 | 178 2 3 |
| 2 4 9 | 8 167 3 | 157 16 a56 |
| 1 378 37 | 2 67 5 | 4 68 9 |
+--------------------+-------------------+---------------------+
| 9 35 123 | A14 x128 6 | w58-1 34 7 |
| 8 c367 1237 | 5 29-1 B49 | C19 34 b26 |
| 4 d56 12 | 3 y1289 7 | z189-5 168 26-5 |
+--------------------+-------------------+---------------------+
1. W-Wing: (5=6)r5c9 - r8c9 = r8c2 - (6=5)r9c2 => -5 r9c9; 1 placement
2. Y-Wing: (1=4)r7c4 - (4=9)r8c6 - (9=1)r8c7 => -1 r7c7, r8c5
3. M-Wing: (5=8)r7c7 - r7c5 = (8-9)r9c5 = (9)r9c7 => -5 r9c7; ste
Total size of the solution: 3x3 = 9