Five BUGs:
============================================================
IStart grid:
- Code: Select all
1 . 6 | . . 7 | . . .
. 4 7 | 8 . . | . . 3
2 8 . | 5 1 . | . . 9
-------+-------+------
. . . | . . 3 | . . 5
. . 2 | . . . | 9 . .
6 . . | 9 . . | . . .
-------+-------+------
4 . . | . 3 8 | . 7 2
8 . . | . . 5 | 3 9 .
. . . | 6 . . | 1 . 8
After all basic tactics:
- Code: Select all
1 9 6 | 3 2 7 | 8 5 4
5 4 7 | 8 . . | 2 1 3
2 8 3 | 5 1 4 | 7 6 9
-------+-------+------
9 1 4 | . . 3 | 6 . 5
. 5 2 | 4 . . | 9 . .
6 . 8 | 9 5 . | 4 . .
-------+-------+------
4 6 9 | 1 3 8 | 5 7 2
8 . 1 | . 4 5 | 3 9 6
. . 5 | 6 . . | 1 4 8
- Code: Select all
1 9 6 | 3 2 7 | 8 5 4
5 4 7 | 8 69 69 | 2 1 3
2 8 3 | 5 1 4 | 7 6 9
---------------+----------------+-------------
9 1 4 | 27 78 3 | 6 28 5
37 5 2 | 4 68 16 | 9 38 17
6 37 8 | 9 5 12 | 4 23 17
---------------+----------------+-------------
4 6 9 | 1 3 8 | 5 7 2
8 27 1 | 27 4 5 | 3 9 6
37 237 5 | 6 79 29 | 1 4 8
The easy BUG exclusion replaces a 6 cell xy-type forcing chain.
This one is interesting to me because it is solved using *only* easy, basic tactics plus BUG -- which couldn't be any easier.
============================================================
IIIn this one, BUG allows the identical exclusion that would have required a bilocation chain or simple coloring.
- Code: Select all
5 . . | . . . | . . .
2 . . | 8 1 3 | 4 . .
. . 9 | 6 . . | . . 7
------+-------+------
. . 7 | . . 8 | . 2 .
. 3 . | 2 . 5 | . 7 .
. 8 . | 3 . . | 6 . .
------+-------+------
3 . . | . . 9 | 7 . .
. . 1 | 4 8 6 | . . 2
. . . | . . . | . . 6
============================================================
IIIThis one required a variety of tactics, ending with either BUG or a short bi-location chain or simple coloring:
- Code: Select all
. . . | 7 . 3 | . 5 .
. . . | 2 1 . | . . .
3 . 6 | . 8 . | . . .
-------+-------+------
6 . 9 | . . . | . 2 5
. . 3 | . . . | 6 . .
5 4 . | . . . | 8 . 3
-------+-------+------
. . . | . 3 . | 7 . 1
. . . | . 6 7 | . . .
. 1 . | 9 . 5 | . . .
- Code: Select all
. . . | 7 . 3 | . 5 6
. 5 . | 2 1 6 | 9 3 8
3 . 6 | 5 8 . | . . 7
-------+-------+------
6 8 9 | 3 7 . | . 2 5
. 7 3 | . 5 . | 6 . 9
5 4 . | 6 . . | 8 7 3
-------+-------+------
. 6 5 | . 3 . | 7 9 1
9 3 . | 1 6 7 | 5 8 .
. 1 . | 9 . 5 | 3 6 .
- Code: Select all
18 29 18 | 7 49 3 | 24 5 6
47 5 47 | 2 1 6 | 9 3 8
3 29 6 | 5 8 49 | 124 14 7
----------------+----------------+-------------
6 8 9 | 3 7 14 | 14 2 5
12 7 3 | 48 5 28 | 6 14 9
5 4 12 | 6 29 19 | 8 7 3
----------------+----------------+-------------
24 6 5 | 48 3 28 | 7 9 1
9 3 24 | 1 6 7 | 5 8 24
78 1 78 | 9 24 5 | 3 6 24
============================================================
IV- Code: Select all
. 7 . | . . 5 | 1 . .
2 5 . | . 4 . | . 6 .
. . 4 | . . . | . 9 .
------+-------+------
7 4 . | 6 9 . | . . .
9 . . | . 5 . | . . 7
. . . | . 8 4 | . 1 6
------+-------+------
. 6 . | . . . | 2 . .
. 3 . | . 6 . | . 8 1
. . 7 | 4 . . | . 5 .
- Code: Select all
6 7 9 | 8 . 5 | 1 . 4
2 5 3 | 1 4 9 | 7 6 8
. . 4 | . 7 6 | . 9 .
-------+-------+------
7 4 . | 6 9 . | . . .
9 . 6 | . 5 . | . 4 7
3 2 5 | 7 8 4 | 9 1 6
-------+-------+------
4 6 . | 5 . . | 2 7 9
5 3 2 | 9 6 7 | 4 8 1
. 9 7 | 4 . . | 6 5 3
- Code: Select all
6 7 9 | 8 23 5 | 1 23 4
2 5 3 | 1 4 9 | 7 6 8
18 18 4 | 23 7 6 | 35 9 25
----------------+----------------+-------------
7 4 18 | 6 9 13 | 358 23 25
9 18 6 | 23 5 123 | 38 4 7
3 2 5 | 7 8 4 | 9 1 6
----------------+----------------+-------------
4 6 18 | 5 13 38 | 2 7 9
5 3 2 | 9 6 7 | 4 8 1
18 9 7 | 4 12 28 | 6 5 3
At this point, an XY-wing could be used reduce the puzzle to singles.
Just before the XY-wing are TWO tri-value cells. If both are reduced to create BUG:
- Code: Select all
6 7 9 | 8 23 5 | 1 23 4
2 5 3 | 1 4 9 | 7 6 8
18 18 4 | 23 7 6 | 35 9 25
----------------+----------------+-------------
7 4 18 | 6 9 13 | 58 23 25
9 18 6 | 23 5 12 | 38 4 7
3 2 5 | 7 8 4 | 9 1 6
----------------+----------------+-------------
4 6 18 | 5 13 38 | 2 7 9
5 3 2 | 9 6 7 | 4 8 1
18 9 7 | 4 12 28 | 6 5 3
Rows 4 and 5, columns 6 and 7, boxes 5 and 6 are now all bivalue trips, quads or quints and no resulting singles created.
The two *link* cells, r4c6 and r5c7 remain unchanged. I *think* this is enough to allow me to use BUG to place 3's in both tri-value cells.
(Did I get that right? Feel free to re-word or invalidate my deduction here.)
============================================================
V- Code: Select all
. . . | . . . | . 1 .
. . . | 1 5 . | . . 3
. . 4 | . . . | 8 . 2
-------+-------+------
. 7 . | . . 9 | . . .
. 1 . | . . . | . 7 8
. . . | 8 . . | 1 5 .
-------+-------+------
. . 1 | . . 3 | . . 9
5 . . | . 2 7 | . . .
. 6 7 | . 8 . | 4 . .
Solving for singles only leaves:
- Code: Select all
6 . . | 2 9 4 | 5 1 7
7 . . | 1 5 8 | 6 4 3
1 5 4 | 7 3 6 | 8 9 2
-------+-------+------
8 7 5 | . 1 9 | 2 3 .
. 1 . | 3 . 5 | 9 7 8
9 . . | 8 7 2 | 1 5 .
-------+-------+------
. . 1 | 5 . 3 | 7 . 9
5 . . | . 2 7 | 3 . 1
3 6 7 | 9 8 1 | 4 2 5
- Code: Select all
6 38 38 | 2 9 4 | 5 1 7
7 29 29 | 1 5 8 | 6 4 3
1 5 4 | 7 3 6 | 8 9 2
----------------+----------------+-------------
8 7 5 | 46 1 9 | 2 3 46
24 1 26 | 3 46 5 | 9 7 8
9 34 36 | 8 7 2 | 1 5 46
----------------+----------------+-------------
24 248 1 | 5 46 3 | 7 68 9
5 489 89 | 46 2 7 | 3 68 1
3 6 7 | 9 8 1 | 4 2 5
At this point, an X-wing in 4s followed by either an XY-wing or BUG exclusion finishes it off.
However, as in the previous puzzle, just before the XY-wing are TWO tri-value cells, though in this case, they are in the same house.
If both are reduced to create BUG:
- Code: Select all
6 38 38 | 2 9 4 | 5 1 7
7 29 29 | 1 5 8 | 6 4 3
1 5 4 | 7 3 6 | 8 9 2
----------------+----------------+-------------
8 7 5 | 46 1 9 | 2 3 46
24 1 26 | 3 46 5 | 9 7 8
9 34 36 | 8 7 2 | 1 5 46
----------------+----------------+-------------
24 28 1 | 5 46 3 | 7 68 9
5 49 89 | 46 2 7 | 3 68 1
3 6 7 | 9 8 1 | 4 2 5
... then row 7 and 8, column 2 and box 7 all contain bivalue quads or quints.
There are no singles.
It *seems* as if I can I deduce that r7c2=4 and r8c2=8.
However, r7c2 should actually hold a 2.
I believe this implies that all I can really deduce is that EITHER r7c2=4 OR r8c2=8, which is true, but of very little help in a solution.
I also believe that this shows that *if* BUG can work with more than one tri-value cells, they cannot be in the same house.