interesting one

Post the puzzle or solving technique that's causing you trouble and someone will help

interesting one

Postby storm_norm » Wed Apr 09, 2008 6:26 am

Code: Select all
3.7|..9|..6
...|..7|...
82.|...|1..
---+---+---
.5.|.6.|..1
...|354|...
7..|.9.|.6.
---+---+---
..5|...|.12
...|9..|...
4..|2..|3.7


way over my head

enjoy,

Norm
storm_norm
 
Posts: 85
Joined: 27 February 2008

Postby eleven » Wed Apr 09, 2008 1:53 pm

Code: Select all
 *----------------------------------------------------------------*
 | 3     14     7      | 1458  1248   9      | 2458  2458   6     |
 | 5     1469   1469   | 1468 *12348  7      | 2489  23489  3489  |
 | 8     2      469    | 456  *34     36     | 1     7      3459  |
 |---------------------+---------------------+--------------------|
 | 29    5      23489  | 7     6      28     | 2489  23489  1     |
 | 1269  1689   12689  | 3     5      4      | 7     289    89    |
 | 7    *348    2348   | 18    9      128    | 2458  6      3458  |
 |---------------------+---------------------+--------------------|
 | 69   #36789  5      | 468  #3478   368    | 4689  1      2     |
 | 126  #13678  12368  | 9    #13478  13568  | 4568  458    458   |
 | 4     1689   1689   | 2     18     1568   | 3     589    7     |
 *----------------------------------------------------------------*

UR 37, r6c2=3 or r23c5=3
r23c5=3 -> r3c6=6 -> r7c4=6
r6c2=3 -> r8c3=3 -> r8c1=2 -> r4c1=9 -> r7c1=6
I.e. r7c267<>6
Code: Select all
 *--------------------------------------------------------------*
 | 3     14    7      | 1458  1248   9     | 2458  2458   6     |
 | 5     1469  1469   | 1468  12348  7     | 2489  23489  3489  |
 | 8     2     469    | 456   34     36    | 1     7      3459  |
 |--------------------+--------------------+--------------------|
 | 29    5     23489  | 7     6      28    | 2489  23489  1     |
 | 1269  1689  12689  | 3     5      4     | 7     289    89    |
 | 7     348   2348   | 18    9      128   | 2458  6      3458  |
 |--------------------+--------------------+--------------------|
 |*69    3789  5      |*468   3478   38    |*489   1      2     |
 | 12    1378  1238   | 9     13478  1358  | 6     458    458   |
 | 4     1689  1689   | 2     18    *1568  | 3    *589    7     |
 *--------------------------------------------------------------*

Either r9c6=5 or (r9c8=5 -> r7c7=9 -> r7c1=6 -> r9c6=6), i.e. r9c6=56
Code: Select all
 *--------------------------------------------------------------*
 | 3     14    7      | 1458  1248   9     | 2458  2458   6     |
 | 5     1469  1469   | 1468  12348  7     | 2489  23489  3489  |
 | 8     2     469    | 456   34     36    | 1     7      3459  |
 |--------------------+--------------------+--------------------|
 |-29    5     23489  | 7     6     *28    | 2489  23489  1     |
 | 1269  1689  12689  | 3     5      4     | 7     289    89    |
 | 7     348   2348   | 18    9     *128   | 2458  6      3458  |
 |--------------------+--------------------+--------------------|
 | 69    3789  5      | 468   3478   38    | 489   1      2     |
 |*12    1378  1238   | 9     13478 *1358  | 6     458    458   |
 | 4     1689  1689   | 2     18     56    | 3     589    7     |
 *--------------------------------------------------------------*

Either r8c1=2 or (r8c1=1 -> r6c6=1 -> r3c6=2), i.e. r4c1<>2
eleven
 
Posts: 3173
Joined: 10 February 2008

Postby daj95376 » Wed Apr 09, 2008 4:52 pm

Code: Select all
3.7..9..6.....7...82....1...5..6...1...354...7...9..6...5....12...9.....4..2..3.7

    b5  -  1     Locked Candidate (1)
    b8  -  5     Locked Candidate (1)

finned Franken Swordfish c17b1\r247   <> 9  [r4c3]

 +-----------------------------------------------------------------------+
 |  3      14     7      |  1458   1248   9      |  2458   2458   6      |
 |  5      1469   1469   |  1468   12348  7      |  2489   23489  3489   |
 |  8      2      469    |  456    34     36     |  1      7      3459   |
 |-----------------------+-----------------------+-----------------------|
 |  29     5      2348   |  7      6      28     |  2489   23489  1      |
 |  1269   1689   12689  |  3      5      4      |  7      289    89     |
 |  7      348    2348   |  18     9      128    |  2458   6      3458   |
 |-----------------------+-----------------------+-----------------------|
 |  69     36789  5      |  468    3478   368    |  4689   1      2      |
 |  126    13678  12368  |  9      13478  13568  |  4568   458    458    |
 |  4      1689   1689   |  2      18     1568   |  3      589    7      |
 +-----------------------------------------------------------------------+

Someone else will have to convert this to NL notation.

Code: Select all
[r4c1]=2 [r4c6]=8 [r37c6]=36 [r89c6]=15 [r9c5]=8 [b7]~169 => [r4c1]<>2

Code: Select all
r8      -  48    Naked  Pair
  c2    -  1347  Naked  Quad
    b1  -  69    Naked  Pair
r2c9    <> 9     XY-Wing    on [r5c2]
r8c2    <> 37    Unique Rectangle Type 1
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby hobiwan » Wed Apr 09, 2008 5:58 pm

Different approach:
Code: Select all
.------------------------.---------------------.---------------------.
|  3     14       7      | 1458  1248   9      | 2458   2458   6     |
|  5     1469     1469   | 1468  12348  7      | 2489   23489  3489  |
|  8     2        469    | 456   34     36     | 1      7      3459  |
:------------------------+---------------------+---------------------:
|  29    5        23489  | 7     6      28     | 2489   23489  1     |
|  1269  1689     12689  | 3     5      4      | 7      289    89    |
|  7     348      2348   | 18    9      128    | 2458   6      3458  |
:------------------------+---------------------+---------------------:
| C69    3-678-9  5      | 468   3478   368    | 4689   1      2     |
|  12-6  13-678   123-68 | 9     13478  13568  | 4568   458    458   |
|  4    A1689    A1689   | 2    B18     -156-8 | 3      5-89   7     |
'------------------------'---------------------'---------------------'

Sue de Coq: [r9c23] - {1689} ([r9c5] - {18}, [r7c1] - {69}) => [r78c2],[r8c13]<>6, [r7c2]<>9, [r9c6]<>1, [r9c68]<>8
W-Wing: 8 in [r6c4],[r9c5] verbunden durch 1 in [r68c6] => [r7c4]<>8

Code: Select all
.---------------------.-----------------------.---------------------.
| 3      14     7     | 1458   1248     9     | 2458   2458   6     |
| 5      1469   1469  | 1468   12348    7     | 2489   23489  3489  |
| 8      2      469   | 456    34       36    | 1      7      3459  |
:---------------------+-----------------------+---------------------:
| 29     5      23489 | 7      6       B28    | 2489   23489  1     |
| 1269   1689   12689 | 3      5        4     | 7      289    89    |
| 7      348    2348  | 18     9        128   | 2458   6      3458  |
:---------------------+-----------------------+---------------------:
| 69     378    5     | 46     347-8   A368   | 4689   1      2     |
| 12     1378   1238  | 9      -1347-8 A13568 | 4568   458    458   |
| 4      1689   1689  | 2     C18      B56    | 3      59     7     |
'---------------------'-----------------------'---------------------'

Sue de Coq: [r78c6] - {13568} ([r39c6] - {356}, [r9c5] - {18}) => [r78c5]<>8, [r8c5]<>1
Naked Triple: 3,4,7 in [r378c5] => [r12c5]<>4, [r2c5]<>3
Locked Candidates Type 1 (Pointing): 3 in b2 => [r3c9]<>3
Discontinuous Nice Loop [r4c1]-2-[r4c6]=2=[r6c6]=1=[r8c6]-1-[r8c1]-2-[r4c1] => [r4c1]<>2
Singles
Locked Candidates Type 1 (Pointing): 8 in b9 => [r8c23]<>8
Hidden Triple: 6,8,9 in [r259c2] => [r25c2]<>1, [r2c2]<>4
Naked Pair: 6,9 in [r2c2],[r3c3] => [r2c3]<>6, [r2c3]<>9
W-Wing: 8 in [r5c9],[r9c3] verbunden durch 9 in [r3c39] => [r5c3]<>8
XY-Wing: 8/6/9 in [r25c2],[r5c9] => [r2c9]<>9
Uniqueness Test 1: 3/7 in [r7c25],[r8c25] => [r8c2]<>3, [r8c2]<>7
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby eleven » Thu Apr 10, 2008 1:49 pm

daj95376 wrote:Someone else will have to convert this to NL notation.
Code: Select all
[r4c1]=2 [r4c6]=8 [r37c6]=36 [r89c6]=15 [r9c5]=8 [b7]~169 => [r4c1]<>2
Suppose you would need 2 big ALS's, hard to read.
But i can easily follow your notation, maybe you should write [r7c1,r9c23]=169 [r8c1]=2 => [r4c1]<>2 at the end.
eleven
 
Posts: 3173
Joined: 10 February 2008

Postby ronk » Thu Apr 10, 2008 2:36 pm

daj95376 wrote:Someone else will have to convert this to NL notation.

[r4c1]=2 [r4c6]=8 [r37c6]=36 [r89c6]=15 [r9c5]=8 [b7]~169 => [r4c1]<>2

Code: Select all
After SSTS
 3     14     7     | 1458  1248   9     | 2458  2458  6
 5     1469   1469  | 1468  12348  7     | 2489  23489 3489
 8     2      469   | 456   34    B36    | 1     7     3459
--------------------+--------------------+------------------
 9-2   5      23489 | 7     6     A28    | 2489  23489 1
 1269  1689   12689 | 3     5      4     | 7     289   89
 7     348    2348  | 18    9      128   | 2458  6     3458
--------------------+--------------------+------------------
D69    36789  5     | 468   3478  B368   | 4689  1     2
D126   13678  12368 | 9     13478 B13568 | 4568  458   458
 4    D1689  D1689  | 2    C18    B1568  | 3     589   7

           A             B          C              D
r4c1 -2- r4c6 -8- ALS:r3789c6 -1- r9c5 -8- ALS:[r9c23,r78c1] -2- r4c1 ==> r4c1<>2

With a little more detail ...

r4c1 -2- r4c6 -8- ALS:(r3789c6 =8|1= r89c6) -1- r9c5 -8- ALS:(r9c23 =8|2= r78c1) -2- r4c1 ==> r4c1<>2
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby storm_norm » Fri Apr 11, 2008 5:31 am

Code: Select all
.6....92.
.7.23.8..
...7.1...
8........
..56.84..
........3
...4.7...
..3.15.6.
.92....4.


I'll toss this one in as bonus.
storm_norm
 
Posts: 85
Joined: 27 February 2008

Postby Draco » Sat Apr 12, 2008 2:55 am

storm_norm wrote:
Code: Select all
.6....92.
.7.23.8..
...7.1...
8........
..56.84..
........3
...4.7...
..3.15.6.
.92....4.


I'll toss this one in as bonus.

Some bonus... my solver needed 15+ short forcing chains to crack this (I can post if anyone really wants to see that many). Pretty slim pickings for clues...

Cheers,

- drac
Draco
 
Posts: 143
Joined: 14 March 2008

Postby Carcul » Sun May 11, 2008 2:28 pm

Code: Select all
 *----------------------------------------------------------------*
 | 3      14     7     | 1458   1248   9     | 2458   2458   6    |
 | 5      1469   1469  | 1468   12348  7     | 2489   23489  3489 |
 | 8      2      469   | 456    34     36    | 1      7      3459 |
 |---------------------+---------------------+--------------------|
 | 29     5      23489 | 7      6      28    | 2489   23489  1    |
 | 1269   1689   12689 | 3      5      4     | 7      289    89   |
 | 7      348    2348  | 18     9      128   | 2458   6      3458 |
 |---------------------+---------------------+--------------------|
 | 69     36789  5     | 468    3478   368   | 4689   1      2    |
 | 126    13678  12368 | 9      13478  13568 | 4568   458    458  |
 | 4      1689   1689  | 2      18     1568  | 3      589    7    |
 *----------------------------------------------------------------*

1) [r9c8]=9=[r7c7]-9-[r7c1]-6-[r9c235]-9-[r9c8], => r7c2<>6,9; r8c123<>6.

2) [r9c6]-1-[r7c1|r9c23]-8-[r9c5]-1-[r9c6], => r9c6<>1.

3) [r9c6]=5=[r8c6]=1=[r6c6]=2=[r4c6]-2-[r4c1]-9-[r7c1]-6-[r9c23]=6=
=[r9c6], => r9c6<>8; r8c6<> 3,6,8; r6c6<>8; r4c3, r4c7, r4c8 <>2; r5c1<>9.

4) [r8c6]-1-[r6c6]-2-[r4c6]=2=[r4c1]-2-[r8c1]-1-[r8c6], => r8c6<>1 and the puzzle is solved.
Carcul
 
Posts: 724
Joined: 04 November 2005

Postby daj95376 » Sun May 11, 2008 11:00 pm

Carcul wrote:
Code: Select all
 *----------------------------------------------------------------*
 | 3      14     7     | 1458   1248   9     | 2458   2458   6    |
 | 5      1469   1469  | 1468   12348  7     | 2489   23489  3489 |
 | 8      2      469   | 456    34     36    | 1      7      3459 |
 |---------------------+---------------------+--------------------|
 | 29     5      23489 | 7      6      28    | 2489   23489  1    |
 | 1269   1689   12689 | 3      5      4     | 7      289    89   |
 | 7      348    2348  | 18     9      128   | 2458   6      3458 |
 |---------------------+---------------------+--------------------|
 | 69     36789  5     | 468    3478   368   | 4689   1      2    |
 | 126    13678  12368 | 9      13478  13568 | 4568   458    458  |
 | 4      1689   1689  | 2      18     1568  | 3      589    7    |
 *----------------------------------------------------------------*

1) [r9c8]=9=[r7c7]-9-[r7c1]-6-[r9c235]-9-[r9c8], => r7c2<>6,9; r8c123<>6.

Carcul: Isn't [r9c6]<>1,8 also part of (1):?:
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby Glyn » Mon May 12, 2008 12:54 am

Deleted post as it was incorrect.
Last edited by Glyn on Sun May 11, 2008 9:32 pm, edited 1 time in total.
Glyn
 
Posts: 357
Joined: 26 April 2007

Postby ronk » Mon May 12, 2008 1:16 am

daj95376 wrote:
Carcul wrote:1) [r9c8]=9=[r7c7]-9-[r7c1]-6-[r9c235]-9-[r9c8], => r7c2<>6,9; r8c123<>6.

Isn't [r9c6]<>1,8 also part of 1):?:

Yes. Due to the continuous nature of the loop, all weak links become conjugate links and digits 1 & 8 are locked in the ALS.

r9c8 =9= r7c7 -9- r7c1 -6- ALS:(r9c23 =6|18|9= r9c235) -9- r9c8 = continuous loop,
==> r7c2<>69, r8c123<>6, r9c6<>18, r9c8<>8 [edit: added r9c8<>8]

Carcul, those are two very nice continuous loops.
Last edited by ronk on Sun May 11, 2008 11:32 pm, edited 1 time in total.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby Glyn » Mon May 12, 2008 1:35 am

Thanks Ronk for coming up with the correct explanation I can see now that from the notation that r9c235 are either {186} or (189} and r9c6<>1,8 either way.
Glyn
 
Posts: 357
Joined: 26 April 2007

Postby daj95376 » Mon May 12, 2008 6:24 am

Code: Select all
 *----------------------------------------------------------------*
 | 3      14     7     | 1458   1248   9     | 2458   2458   6    |
 | 5      1469   1469  | 1468   12348  7     | 2489   23489  3489 |
 | 8      2      469   | 456    34     36    | 1      7      3459 |
 |---------------------+---------------------+--------------------|
 | 29     5      23489 | 7      6      28    | 2489   23489  1    |
 | 1269   1689   12689 | 3      5      4     | 7      289    89   |
 | 7      348    2348  | 18     9      128   | 2458   6      3458 |
 |---------------------+---------------------+--------------------|
 | 69     36789  5     | 468    3478   368   | 4689   1      2    |
 | 126    13678  12368 | 9      13478  13568 | 4568   458    458  |
 | 4      1689   1689  | 2      18     1568  | 3      589    7    |
 *----------------------------------------------------------------*

Upon closer inspection, I think ronk is correct that [r9c8]<>8 can be added to Carcul's list of eliminations in chain (1). But, I also think that I was wrong to suggest that [r9c6]<>18 could be added to Carcul's list. If we treat Carcul's chain as a forcing chain with two streams of overlapping eliminations, then it becomes clearer (for me).

Code: Select all
1a) [r9c8]<>9 [r7c7]=9 [r7c1]=6 [r9c23]<>6 [r9c235]=189

1b) [r9c8]=9 [r9c23]<>9 [r9c235]=168 [r9c2|3]=6 [r7c1]=9

In this interpretation, [r9c6]<>18 and [r9c8]<>8 can be added to Carcul's elimination list based on (1a). However, in (1b) only [r9c8]<>8 can be added to Carcul's elimination list. In order for (1b) to cause [r7c1]=9 and [r9c6]<>18, I believe that it must become a network at [r9c235]=168.

However, if Carcul had started his chain at [r9c6]:idea:

Code: Select all
 -5r9c6 5r9c8  9r7c7  6r7c1 6r9c6

  5r9c6 6r9c23 9r7c1 -9r7c7 9r9c8
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby Glyn » Mon May 12, 2008 8:48 am

I think this would produce the eliminations given by Ronk

(189=6)ALS:r9c235-(6=9)r7c1-(9=168)ALS:r9c235

The closure of the loop allows Carcul's eliminations at the peers of the ends of the weak links (ie the 6's and 9's in Box 7 outside the chain). The ends of the chain give the strong link between the values possible in r9c235 leading to Ronk's additional eliminations.
Glyn
 
Posts: 357
Joined: 26 April 2007

Next

Return to Help with puzzles and solving techniques