Or is it just comprehensive forcing chains in which one link is a double cell?
Simpler tactics brought me to here:
- Code: Select all
- 4 6 5 | 8 1 3 | 7 2 9
 2 . 7 | 4 9 6 | . . .
 9 8 . | 5 2 7 | 6 4 .
 -------+-------+------
 . . 6 | 1 8 5 | 2 . .
 . . . | 9 3 2 | . . 6
 . . 2 | 7 6 4 | 3 . .
 -------+-------+------
 . 2 . | 6 7 9 | . 8 .
 6 . 8 | 2 5 1 | 9 . .
 5 7 9 | 3 4 8 | 1 6 2
- Code: Select all
- 4 6 5 | 8 1 3 | 7 2 9
 2 13 7 | 4 9 6 | 58 135 1358
 9 8 13 | 5 2 7 | 6 4 13
 -------------------+-------------------+-------------------
 37 349 6 | 1 8 5 | 2 79 47
 178 15 14 | 9 3 2 | 458 157 6
 18 159 2 | 7 6 4 | 3 159 158
 -------------------+-------------------+-------------------
 13 2 134 | 6 7 9 | 45 8 35
 6 34 8 | 2 5 1 | 9 37 47
 5 7 9 | 3 4 8 | 1 6 2
All values of r6c1 imply r5c7=8, therefore r5c7=8, solving the puzzle.
r6c1=8 -> r5c1<>8 -> r5c7=8
- Code: Select all
- 4 6 5 | 8 1 3 | 7 2 9
 2 13 7 | 4 9 6 | 58 135 1358
 9 8 13 | 5 2 7 | 6 4 13
 -------------------+-------------------+-------------------
 37 349 6 | 1 8 5 | 2 79 47
 17x8x 15 14 | 9 3 2 | 45[8] 157 6
 1[8] 159 2 | 7 6 4 | 3 159 158
 -------------------+-------------------+-------------------
 13 2 134 | 6 7 9 | 45 8 35
 6 34 8 | 2 5 1 | 9 37 47
 5 7 9 | 3 4 8 | 1 6 2
r6c1=1 -> (r5c2=5 and r5c3=4) -> r5c7=8
- Code: Select all
- 4 6 5 | 8 1 3 | 7 2 9
 2 13 7 | 4 9 6 | 58 135 1358
 9 8 13 | 5 2 7 | 6 4 13
 -------------------+-------------------+-------------------
 37 349 6 | 1 8 5 | 2 79 47
 178 1[5] 1[4] | 9 3 2 | 45[8] 157 6
 [1]8 159 2 | 7 6 4 | 3 159 158
 -------------------+-------------------+-------------------
 13 2 134 | 6 7 9 | 45 8 35
 6 34 8 | 2 5 1 | 9 37 47
 5 7 9 | 3 4 8 | 1 6 2
This second chain is of this form:
A -> (B+C) -> D
This doesn't seem much more complex than the typical chain of the form:
A -> B -> C -> D
... and certainly less complex than a 'forcing net' form:
A -> B -> C; (B+C) -> D


 so r6c1<>1
 so r6c1<>1
 I didn't make comment on Carcul's notation because the propagation in his loop is not broken. It is just not ideal.
 I didn't make comment on Carcul's notation because the propagation in his loop is not broken. It is just not ideal.