Or is it just comprehensive forcing chains in which one link is a double cell?
Simpler tactics brought me to here:
- Code: Select all
4 6 5 | 8 1 3 | 7 2 9
2 . 7 | 4 9 6 | . . .
9 8 . | 5 2 7 | 6 4 .
-------+-------+------
. . 6 | 1 8 5 | 2 . .
. . . | 9 3 2 | . . 6
. . 2 | 7 6 4 | 3 . .
-------+-------+------
. 2 . | 6 7 9 | . 8 .
6 . 8 | 2 5 1 | 9 . .
5 7 9 | 3 4 8 | 1 6 2
- Code: Select all
4 6 5 | 8 1 3 | 7 2 9
2 13 7 | 4 9 6 | 58 135 1358
9 8 13 | 5 2 7 | 6 4 13
-------------------+-------------------+-------------------
37 349 6 | 1 8 5 | 2 79 47
178 15 14 | 9 3 2 | 458 157 6
18 159 2 | 7 6 4 | 3 159 158
-------------------+-------------------+-------------------
13 2 134 | 6 7 9 | 45 8 35
6 34 8 | 2 5 1 | 9 37 47
5 7 9 | 3 4 8 | 1 6 2
All values of r6c1 imply r5c7=8, therefore r5c7=8, solving the puzzle.
r6c1=8 -> r5c1<>8 -> r5c7=8
- Code: Select all
4 6 5 | 8 1 3 | 7 2 9
2 13 7 | 4 9 6 | 58 135 1358
9 8 13 | 5 2 7 | 6 4 13
-------------------+-------------------+-------------------
37 349 6 | 1 8 5 | 2 79 47
17x8x 15 14 | 9 3 2 | 45[8] 157 6
1[8] 159 2 | 7 6 4 | 3 159 158
-------------------+-------------------+-------------------
13 2 134 | 6 7 9 | 45 8 35
6 34 8 | 2 5 1 | 9 37 47
5 7 9 | 3 4 8 | 1 6 2
r6c1=1 -> (r5c2=5 and r5c3=4) -> r5c7=8
- Code: Select all
4 6 5 | 8 1 3 | 7 2 9
2 13 7 | 4 9 6 | 58 135 1358
9 8 13 | 5 2 7 | 6 4 13
-------------------+-------------------+-------------------
37 349 6 | 1 8 5 | 2 79 47
178 1[5] 1[4] | 9 3 2 | 45[8] 157 6
[1]8 159 2 | 7 6 4 | 3 159 158
-------------------+-------------------+-------------------
13 2 134 | 6 7 9 | 45 8 35
6 34 8 | 2 5 1 | 9 37 47
5 7 9 | 3 4 8 | 1 6 2
This second chain is of this form:
A -> (B+C) -> D
This doesn't seem much more complex than the typical chain of the form:
A -> B -> C -> D
... and certainly less complex than a 'forcing net' form:
A -> B -> C; (B+C) -> D