this thread is way off topic now.
but heres more of my two sence.
if your ordering operand to simplistic techniques first followed by more complexities then your are deffintily not following the techniques of a person solver whom may infact not see the orignal simplisitic pattern and go for the harder ones take this grid.
there is also this fact that is missed: Many Techniques are optional at every given point of a puzzle. how do we pick one. or do we go for them all.
from the first page of Ultimet fish guide.
here is two patterns at once that could be seen.
a player can spot either or: or advance it further and see both.
the pattern can also be used to find "9" and remove it from the same marked cells.
Candidate '8': finned mutant bbbb\rrcc
- Code: Select all
*-----------------------------------------------------------*
|*4689 *689 *489 | 1 3 7 |-489 5 2 |
| 2 /1 /3 | 489 5 6 | 7 49 #489 |
|*489 /5 /7 | 489 2 48 | 6 1 3 |
|-------------------+-------------------+-------------------|
| 5 3 *89 | 7 1 2 |*489 469 *689 |
|*89 /4 /1 | 3 6 89 | 2 /7 /5 |
| 7 /2 /6 | 5 48 489 |*89 /3 /1 |
|-------------------+-------------------+-------------------|
| 1 6789 2 | 468 478 5 | 3 469 4679 |
| 46 67 5 | 2 9 3 | 1 8 467 |
| 3 6789 489 | 468 478 1 | 5 2 4679 |
*-----------------------------------------------------------*
- Code: Select all
*-----------------------------------------------------------*
|*4689 *689 *489 | 1 3 7 |*489 5 2 |
| 2 /1 /3 | 489 5 6 |/7 /49 *489 |
|*489 /5 /7 | 489 2 48 |/6 /1 3 |
|-------------------+-------------------+-------------------|
| 5 3 *89 | 7 1 2 |*489 469 -689 |
|*89 /4 /1 | 3 6 89 | 2 7 5 |
| 7 /2 /6 | 5 48 489 |#89 3 1 |
|-------------------+-------------------+-------------------|
| 1 6789 2 | 468 478 5 | 3 469 4679 |
| 46 67 5 | 2 9 3 | 1 8 467 |
| 3 6789 489 | 468 478 1 | 5 2 4679 |
*-----------------------------------------------------------*
both and reduce 2 extra clues.
- Code: Select all
*-----------------------------------------------------------*
|*4689 *689 *489 | 1 3 7 |*489 5 2 |
| 2 /1 /3 | @489- 5 6 |/7 /49 *489 |
|*489- /5 /7 | 489@ 2 48@ |/6 /1 3 |
|-------------------+-------------------+-------------------|
| 5 3 *89 | 7 1 2 |*489 469 -689 |
|*89 /4 /1 | 3 6 89@ | 2 7 5 |
| 7 /2 /6 | 5 48 @ 489@ |#89 3 1 |
|-------------------+-------------------+-------------------|
| 1 6789 2 | 468 478 5 | 3 469 4679 |
| 46 67 5 | 2 9 3 | 1 8 467 |
| 3 6789 489 | 468 478 1 | 5 2 4679 |
*-----------------------------------------------------------*
or
how about they instead see a
grouped ALS chain that is self decripting. as a disjointed sub set sum pattern
of 489
- Code: Select all
*-----------------------------------------------------------*
|4689 689 *489 | 1 3 7 |*489 5 2 |
| 2 /1 /3 | 489@ 5 6 |/7 /49# *489 |
|*489 /5 /7 | 489@ 2 48# |/6 /1 3 |
|-------------------+-------------------+-------------------|
| 5 3 *89 | 7 1 2 |*489 469 689 |
|*89 /4 /1 | 3 6 89@ | 2 7 5 |
| 7 /2 /6 | 5 48# 489@ |*89 3 1 |
|-------------------+-------------------+-------------------|
| 1 6789 2 | 468 478 5 | 3 469 4679 |
| 46 67 5 | 2 9 3 | 1 8 467 |
| 3 6789 489@ | 468 478 1 | 5 2 4679 |
*-----------------------------------------------------------*
solves to here:
(the restrcitions are self contained in the set)
plus restitions can occur via line of sight not listed.
- Code: Select all
*-----------------------------------------------------------*
|4689 689 *8 | 1 3 7 |*4 5 2 |
| 2 /1 /3 | 4@ 5 6 |/7 /9# *8 |
|*4 /5 /7 | 9@ 2 8 |/6 /1 3 |
|-------------------+-------------------+-------------------|
| 5 3 *9 | 7 1 2 |*8 469 689 |
|*8 /4 /1 | 3 6 9@ | 2 7 5 |
| 7 /2 /6 | 5 8# 4@ |*9 3 1 |
|-------------------+-------------------+-------------------|
| 1 6789 2 | 468 478 5 | 3 469 4679 |
| 46 67 5 | 2 9 3 | 1 8 467 |
| 3 6789 4@ | 468 478 1 | 5 2 4679 |
*-----------------------------------------------------------*
- Code: Select all
non existent candidates
how is there none exsitance candiates?
if there wasnt any what did i do?
mathmatically note each sell is missing equal candiadtes then arrange the cells into combinations and find some that lead to a zero state? it is possible. the reliminations seen in the complex move are zero states of the pattern.
when All the givens of a row directly reads what is missing in the none locked cells.
there for the cells must be a candidate of some kinda more specifically they are the ones not found in the row,box,column and restctions via line of sight incurred at each cell. ie the numbers visible to them. so you mathamtically know what is and what is not.
combinatiosn of limitation of sight = restrictions no matter how they are mathmatically aranged in order of
"a leads to b", concepts
or bi directional truth options: where both operations of choice of either of two locals arrive at the same conclusion. (in other WOrds AIC)
where 1 has 2 occupances mathmatically limiting via line of sight so that B cannt equal to A