Can you tell us more about the new technique ?
After reviewing, I found a mistake. Sorry.
I can only eliminate a few more candidates but cannot reducing it further.
The technique is called
Alternating Inference Chains.
Here is the original one I posted with labels A to F added:
- Code: Select all
157 3 8 | 4 9 6 | 257F 1257E 1257E
9 2 6 | 1 5 7 | 4 3 8
157 157 4 | 2 8 3 | 6 1579E 1579E
--------------------+----------------------+--------------------
3 6 7 | 9 1 4 | 258 258 25
45 45 1 | 8 6 2 | 3 79C 79D
8 9 2 | 7 3 5 | 1 4 6
--------------------+----------------------+--------------------
124 14 5 | 6 7 9 | 28 128 3
67A 8 3 | 5 2 1 | 9 67B 4
1267 17 9 | 3 4 8 | 257 12567 1257
A7=B7-C7=D7-E7=F7
This means either r8c1 or r1c7 is 7. So, r1c1 cannot be 7. And, because of this, both r3c8 and r3c9 cannot be 7. The puzzle becomes:
- Code: Select all
15 3 8 | 4 9 6 | 257 1257 1257
9 2 6 | 1 5 7 | 4 3 8
157 157 4 | 2 8 3 | 6 159 159
--------------------+----------------------+--------------------
3 6 7 | 9 1 4 | 258 258 25
45 45 1 | 8 6 2 | 3 79 79
8 9 2 | 7 3 5 | 1 4 6
--------------------+----------------------+--------------------
124 14 5 | 6 7 9 | 28 128 3
67 8 3 | 5 2 1 | 9 67 4
1267 17 9 | 3 4 8 | 257 12567 1257
I have verified this.