- - - - - 8 - - 6
- 4 - 3 - 98 - -
8 - - 5 - - 7 - -
- - 1 - - - 2 - -
7 - 428 - - - 5
2 - 6 - - - 3 - -
4 - 38 - 1 - - 9
- - - 4 - 2 - 8 -
5 - 8 - - - - - -
Madhusudanan
*-----------*
|...|..8|..6|
|.4.|3.9|8..|
|8..|5..|7..|
|---+---+---|
|..1|...|2..|
|7.4|28.|..5|
|2.6|...|3..|
|---+---+---|
|4.3|8.1|..9|
|...|4.2|.8.|
|5.8|...|...|
*-----------*
*----------------------------------------------------------------------*
| 139 123579 2579 | 17 1247 8 | 1459 123459 6 |
| 16 4 257 | 3 1267 9 | 8 125 12 |
| 8 12369 29 | 5 1246 46 | 7 12349 1234 |
|---------------------+----------------------+-------------------------|
| 39 3589 1 | 679 345679 34567 | 2 4679 478 |
| 7 39 4 | 2 8 36 | 169 169 5 |
| 2 589 6 | 179 14579 457 | 3 1479 1478 |
|---------------------+----------------------+-------------------------|
| 4 267 3 | 8 567 1 | 56 2567 9 |
| 169 1679 79 | 4 35679 2 | 156 8 137 |
| 5 12679 8 | 679 3679 367 | 146 123467 12347 |
*----------------------------------------------------------------------*
+----------------------+----------------------+----------------------+
| 139 *1379 2579 |$17 1247 8 | 1459 123459 6 |
|#16 4 257 | 3 1267 9 | 8 125 12 |
| 8 *1369 29 | 5 1246 46 | 7 12349 1234 |
+----------------------+----------------------+----------------------+
| 39 58 1 | 679 34679 34567 | 2 4679 478 |
| 7 *39 4 | 2 8 36 | 169 169 5 |
| 2 58 6 | 179 1479 457 | 3 479 478 |
+----------------------+----------------------+----------------------+
| 4 267 3 | 8 567 1 | 56 2567 9 |
| 169 1679 79 | 4 35679 2 | 156 8 137 |
| 5 12679 8 | 679 3679 367 | 146 123467 12347 |
+----------------------+----------------------+----------------------+
a={r1c2,r3c2,r5c}
b={r2c1}
c={r1c4}
x=6
y=7
z=1
Consider the chain r1c1~9~r1c7-9-r5c7~9~r5c2-9-r4c1.
When the cell r1c1 contains the value 9, so does the cell r4c1 - a contradiction.
Therefore, the cell r1c1 cannot contain the value 9.
bennys wrote:you cant have z in a cell that can see all the z candidates in A B C.
Consider the chain r4c1-<9|1>-r1c1~1~r1c4~7~r1c2=<7|9>=r5c2-9-r4c1.
When the cell r4c1 doesn't contain the value 9, the chain is self-contradicting.
Therefore, the cell r4c1 must contain the value 9.
3 . . | 1 . 8 | . . 6
. 4 . | 3 . 9 | 8 . .
8 . . | 5 . 4 | 7 . .
-------+-------+------
9 5 1 | 7 4 3 | 2 6 8
7 3 4 | 2 8 6 | . . 5
2 8 6 | 9 1 5 | 3 . .
-------+-------+------
4 . 3 | 8 5 1 | 6 . 9
. . . | 4 . 2 | 5 8 .
5 . 8 | 6 . 7 | . . .
3 79 2579 | 1 27 8 | 49 2459 6
16 4 257 | 3 267 9 | 8 125 12
8 16 29 | 5 26 4 | 7 1239 123
-----------------+------------+----------------
9 5 1 | 7 4 3 | 2 6 8
7 3 4 | 2 8 6 | 19 19 5
2 8 6 | 9 1 5 | 3 47 47
-----------------+------------+----------------
4 27 3 | 8 5 1 | 6 27 9
16 1679 79 | 4 39 2 | 5 8 137
5 129 8 | 6 39 7 | 14 1234 1234
3 . . | 1 . 8 | . . 6
6 4 . | 3 . 9 | 8 . .
8 1 . | 5 6 4 | 7 . .
-------+-------+------
9 5 1 | 7 4 3 | 2 6 8
7 3 4 | 2 8 6 | . . 5
2 8 6 | 9 1 5 | 3 . .
-------+-------+------
4 . 3 | 8 5 1 | 6 . 9
1 6 . | 4 . 2 | 5 8 .
5 . 8 | 6 . 7 | . . .
3 79 2579 | 1 27 8 | 49 2459 6
6 4 257 | 3 27 9 | 8 125 12
8 1 29 | 5 6 4 | 7 239 23
--------------+-----------+----------------
9 5 1 | 7 4 3 | 2 6 8
7 3 4 | 2 8 6 | 19 19 5
2 8 6 | 9 1 5 | 3 47 47
--------------+-----------+----------------
4 27 3 | 8 5 1 | 6 27 9
1 6 79 | 4 39 2 | 5 8 37
5 29 8 | 6 39 7 | 14 1234 1234
Consider the cell r1c2.
When it contains the value 7, the value 2 in Row 1 must occupy the cell r1c5.
When it contains the value 9, the value 2 in Box 1 must occupy the cell r3c3.
Whichever value it contains, the cells r1c1 and r1c3 cannot contain the value 2.
- The move r1c3:=2 has been eliminated.
Consider the cell r8c9.
When it contains the value 3, the values 1 and 2 in Column 9 must occupy the cells r2c9 and r3c9 in some order.
When it contains the value 7, the value 2 in Box 9 must occupy the cell r7c8.
Whichever value it contains, the cells r7c9 and r9c9 cannot contain the value 2.
- The move r9c9:=2 has been eliminated.
The value 2 in Box 3 must lie in Column 9.
- The moves r1c8:=2, r2c8:=2 and r3c8:=2 have been eliminated.
The cell r1c5 is the only candidate for the value 2 in Row 1.
---
The value 7 is the only candidate for the cell r2c5.
---
Consider the cell r1c8.
When it contains the value 5, the values 1 and 9 in Column 8 must occupy the cells r2c8 and r5c8 in some order.
When it contains the value 4, the value 9 in Box 3 must occupy the cell r1c7.
Whichever value it contains, the cell r3c8 cannot contain the value 9.
- The move r3c8:=9 has been eliminated.
The value 3 is the only candidate for the cell r3c8.
rubylips wrote:First, here's an alternative solution to the original problem (after the 9 has been eliminated from r1c1):
- Code: Select all
Consider the chain r4c1-<9|1>-r1c1~1~r1c4~7~r1c2=<7|9>=r5c2-9-r4c1.
When the cell r4c1 doesn't contain the value 9, the chain is self-contradicting.
Therefore, the cell r4c1 must contain the value 9.
The subtle link here is r1c2=<7|9>=r5c2. When r1c2 doesn't contain a 7, {r1c1,r1c2,r2c1,r3c2} contain {1,3,6,9} in such a way that the 9 in Column 2 must lie in r1c2 or r3c2 - therefore, r5c2 cannot contain a 9.
Carcul wrote:when you consider the cell r1c8, we can also apply the BUG principle to say that r1c8 = 9.
Ronk wrote:Doesn't that imply that for each of the alternate candidates, r1c8=4 and r1c8=5, we would end up with a grid of only filled cells and bivalued cells?
Carcul wrote:Ronk wrote:Doesn't that imply that for each of the alternate candidates, r1c8=4 and r1c8=5, we would end up with a grid of only filled cells and bivalued cells?
No. That imply that if r1c8<>9, then r1c8=4,5 and we would have a grid with only filled cells and bivalue cells with no elimination possible.