- Code: Select all
3...51.7.
..6.....1
.9..2.5..
....4...3
9.43.56.7
1...7....
..3.6..2.
8.....7..
.1.58...9
Easy moves get you to here:
- Code: Select all
+----------------------+----------------------+----------------------+
| 3 48 *28 | 468 5 1 | 9 7 *2468 |
| 2457 4578 6 | 478 9 3478 | 2348 34 1 |
| 47 9 1 | 4678 2 34678 | 5 346 468 |
+----------------------+----------------------+----------------------+
| 67 678 578 | 289 4 289 | 12 159 3 |
| 9 2 4 | 3 1 5 | 6 8 7 |
| 1 3 *58 | 2689 7 2689 | 24 59 -245 |
+----------------------+----------------------+----------------------+
| 457 457 3 | 1479 6 479 | 148 2 458 |
| 8 456 9 | 124 3 24 | 7 15 456 |
| 2467 1 27 | 5 8 47 | 34 346 9 |
+----------------------+----------------------+----------------------+
Then I'll use what looks like a "Hybrid Wing" to crack it:
r1c3 from {28}
=> r1c9+r6c3 can't be [28]
But there is a strong link of 2 @ r16c9
=> r6c9 can't be 5 (otherwise it will force r1c9+r6c3=[28])
Or, put it in another way:
r16c3=[25|28|85] must have 2|5
=> r16c9 can't be [25]
=> With the strong link of 2 @ r16c9, r6c9 can't be 5
Is there a better (i.e. more elegant) way to solve the puzzle, such as a critical move involving fewer cells or simpler logic?