How many guardians

Post puzzles for others to solve here.

How many guardians

Postby champagne » Sun May 04, 2025 5:36 am

Hope this puzzle has not yet been posted
It comes from mith's file and the skf rating is 11.6

.6435....5.7....1.8.9...3....526..31...1.......2.43.......16.45.....2....4..3..2.

After singles, I am here

Code: Select all
12    6    4   |3    5   1789 |2789    789  2789   
5     3    7   |689  289 489  |24689   1    24689 
8     12   9   |67   27  147  |3       5    2467   
--------------------------------------------------
479   789  5   |2    6   789  |4789    3    1     
34679 789  368 |1    789 5789 |2456789 6789 246789
1679  1789 2   |5789 4   3    |56789   6789 6789   
--------------------------------------------------
2379  2789 38  |789  1   6    |789     4    5     
679   5    168 |4    789 2    |16789   6789 3     
679   4    168 |5789 3   5789 |16789   2    6789   

and the solution grid has the loki pattern
Hidden Text: Show
Code: Select all
1=164 358 279
2=537 924 618
3=829 671 354

4=485 267 931
5=376 195 482
6=912 843 567

7=293 716 845
8=651 482 793
9=748 539 126
champagne
2017 Supporter
 
Posts: 7601
Joined: 02 August 2007
Location: France Brittany

Re: How many guardians

Postby denis_berthier » Sun May 04, 2025 6:32 am

.
I can't see anything special with this puzzle. Tens of similar ones have been published in this section.

Generally speaking, the number of guardians is undefined if you don't specify at what moment in resolution you consider it.
Here, it's 7, be it after Singles or after whips[1]:

Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------------+-------------------------+-------------------------+
   ! 12      6       4       ! 3       5       1789    ! 2789    789     2789    !
   ! 5       3       7       ! 689     289     489     ! 24689   1       24689   !
   ! 8       12      9       ! 67      27      147     ! 3       5       2467    !
   +-------------------------+-------------------------+-------------------------+
   ! 479     789     5       ! 2       6       789     ! 4789    3       1       !
   ! 34679   789     368     ! 1       789     5789    ! 2456789 6789    246789  !
   ! 1679    1789    2       ! 5789    4       3       ! 56789   6789    6789    !
   +-------------------------+-------------------------+-------------------------+
   ! 2379    2789    38      ! 789     1       6       ! 789     4       5       !
   ! 679     5       168     ! 4       789     2       ! 16789   6789    3       !
   ! 679     4       168     ! 5789    3       5789    ! 16789   2       6789    !
   +-------------------------+-------------------------+-------------------------+
179 candidates.


Code: Select all
Trid-OR7-relation for digits 7, 8 and 9 in blocks:
        b5, with cells (marked #): r4c6, r5c5, r6c4
        b6, with cells (marked #): r4c7, r5c8, r6c9
        b8, with cells (marked #): r9c6, r8c5, r7c4
        b9, with cells (marked #): r9c9, r8c8, r7c7
with 7 guardians (in cells marked @): n4r4c7 n6r5c8 n5r6c4 n6r6c9 n6r8c8 n5r9c6 n6r9c9
   +-------------------------+-------------------------+-------------------------+
   ! 12      6       4       ! 3       5       1789    ! 2789    789     2789    !
   ! 5       3       7       ! 689     289     489     ! 24689   1       24689   !
   ! 8       12      9       ! 67      27      147     ! 3       5       2467    !
   +-------------------------+-------------------------+-------------------------+
   ! 479     789     5       ! 2       6       789#    ! 4789#@  3       1       !
   ! 34679   789     368     ! 1       789#    5789    ! 2456789 6789#@  246789  !
   ! 1679    1789    2       ! 5789#@  4       3       ! 56789   6789    6789#@  !
   +-------------------------+-------------------------+-------------------------+
   ! 2379    2789    38      ! 789#    1       6       ! 789#    4       5       !
   ! 679     5       168     ! 4       789#    2       ! 16789   6789#@  3       !
   ! 679     4       168     ! 5789    3       5789#@  ! 16789   2       6789#@  !
   +-------------------------+-------------------------+-------------------------+


But this number is immediately reduced, thrice, by applying elementary short chains:

Code: Select all
biv-chain[3]: r3c5{n7 n2} - b1n2{r3c2 r1c1} - r1n1{c1 c6} ==> r1c6≠7
whip[1]: r1n7{c9 .} ==> r3c9≠7
z-chain[3]: c1n3{r5 r7} - r7n2{c1 c2} - c2n7{r7 .} ==> r5c1≠7
z-chain[3]: c1n3{r5 r7} - r7n2{c1 c2} - c2n9{r7 .} ==> r5c1≠9
z-chain[4]: c1n4{r4 r5} - c1n3{r5 r7} - r7n2{c1 c2} - c2n7{r7 .} ==> r4c1≠7
z-chain[4]: c1n4{r4 r5} - c1n3{r5 r7} - r7n2{c1 c2} - c2n9{r7 .} ==> r4c1≠9
naked-single ==> r4c1=4

At least one candidate of a previous Trid-OR6-relation between candidates n4r4c7 n6r5c8 n5r6c4 n6r6c9 n6r8c8 n6r9c9 has just been eliminated.
There remains a Trid-OR5-relation between candidates: n6r5c8 n5r6c4 n6r6c9 n6r8c8 n6r9c9

At least one candidate of a previous Trid-OR6-relation between candidates n4r4c7 n6r5c8 n6r6c9 n6r8c8 n5r9c6 n6r9c9 has just been eliminated.
There remains a Trid-OR5-relation between candidates: n6r5c8 n6r6c9 n6r8c8 n5r9c6 n6r9c9

hidden-pairs-in-a-block: b6{n2 n4}{r5c7 r5c9} ==> r5c9≠9, r5c9≠8, r5c9≠7, r5c9≠6, r5c7≠9, r5c7≠8, r5c7≠7, r5c7≠6, r5c7≠5
singles ==> r6c7=5, r5c6=5, r9c4=5

At least one candidate of a previous Trid-OR5-relation between candidates n6r5c8 n6r6c9 n6r8c8 n5r9c6 n6r9c9 has just been eliminated.
There remains a Trid-OR4-relation between candidates: n6r5c8 n6r6c9 n6r8c8 n6r9c9

biv-chain[4]: r5c9{n2 n4} - r3n4{c9 c6} - r3n1{c6 c2} - b1n2{r3c2 r1c1} ==> r1c9≠2
z-chain[4]: c2n2{r7 r3} - r3c5{n2 n7} - c4n7{r3 r6} - c1n7{r6 .} ==> r7c2≠7
whip[1]: b7n7{r9c1 .} ==> r6c1≠7


Code: Select all
   +-------------------+-------------------+-------------------+
   ! 12    6     4     ! 3     5     189   ! 2789  789   789   !
   ! 5     3     7     ! 689   289   489   ! 24689 1     24689 !
   ! 8     12    9     ! 67    27    147   ! 3     5     246   !
   +-------------------+-------------------+-------------------+
   ! 4     789   5     ! 2     6     789   ! 789   3     1     !
   ! 36    789   368   ! 1     789   5     ! 24    6789  24    !
   ! 169   1789  2     ! 789   4     3     ! 5     6789  6789  !
   +-------------------+-------------------+-------------------+
   ! 2379  289   38    ! 789   1     6     ! 789   4     5     !
   ! 679   5     168   ! 4     789   2     ! 16789 6789  3     !
   ! 679   4     168   ! 5     3     789   ! 16789 2     6789  !
   +-------------------+-------------------+-------------------+
124 candidates


That was a lot of classical rules applying before the tridagon woke up and used its 3 mouths to reduce the puzzle to BC3 ashes.
Note that the tridaagon hasn't degenerated in the process (which anyway wouldn't change anything in what follows).

Trid-OR4-ctr-whip[6]: r3n6{c4 c9} - r3n4{c9 c6} - c6n1{r3 r1} - c1n1{r1 r6} - r6n6{c1 c8} - OR4{{n6r9c9 n6r6c9 n6r8c8 n6r5c8 | .}} ==> r3c4≠7
naked-single ==> r3c4=6
naked-pairs-in-a-column: c9{r3 r5}{n2 n4} ==> r2c9≠4, r2c9≠2
Trid-OR4-ctr-whip[8]: r3n7{c5 c6} - r3n1{c6 c2} - r6n1{c2 c1} - r1c1{n1 n2} - b3n2{r1c7 r2c7} - r2n6{c7 c9} - r6n6{c9 c8} - OR4{{n6r9c9 n6r6c9 n6r8c8 n6r5c8 | .}} ==> r3c5≠2
singles ==> r3c5=7, r2c5=2
Trid-OR4-ctr-whip[6]: r1c1{n1 n2} - c7n2{r1 r5} - c7n4{r5 r2} - r2n6{c7 c9} - r6n6{c9 c8} - OR4{{n6r5c8 n6r6c9 n6r8c8 n6r9c9 | .}} ==> r6c1≠1

Easy end in BC3:
Code: Select all
singles ==> r6c2=1, r3c2=2, r1c1=1, r3c9=4, r3c6=1, r5c9=2, r5c7=4, r1c7=2, r2c6=4, r7c1=2, r7c3=3, r5c1=3
finned-x-wing-in-rows: n7{r7 r6}{c4 c7} ==> r4c7≠7
whip[1]: c7n7{r9 .} ==> r8c8≠7, r9c9≠7
biv-chain[3]: r5n7{c2 c8} - r5n6{c8 c3} - r6c1{n6 n9} ==> r5c2≠9
biv-chain[3]: r8c5{n8 n9} - r5n9{c5 c8} - r4c7{n9 n8} ==> r8c7≠8
biv-chain[3]: r5n9{c5 c8} - r5n7{c8 c2} - r4n7{c2 c6} ==> r4c6≠9
biv-chain[3]: r8c5{n8 n9} - b5n9{r5c5 r6c4} - c4n7{r6 r7} ==> r7c4≠8
finned-swordfish-in-rows: n8{r4 r7 r1}{c6 c2 c7} ==> r2c7≠8
biv-chain[3]: b5n7{r4c6 r6c4} - r7c4{n7 n9} - c2n9{r7 r4} ==> r4c2≠7
singles ==> r5c2=7, r4c6=7, r7c4=7
naked-pairs-in-a-column: c7{r4 r7}{n8 n9} ==> r9c7≠9, r9c7≠8, r8c7≠9, r2c7≠9
naked-single ==> r2c7=6
finned-x-wing-in-columns: n6{c9 c1}{r6 r9} ==> r9c3≠6
biv-chain[2]: r2n9{c9 c4} - c6n9{r1 r9} ==> r9c9≠9
biv-chain[2]: c6n8{r9 r1} - r2n8{c4 c9} ==> r9c9≠8
naked-single ==> r9c9=6
naked-pairs-in-a-row: r8{c5 c8}{n8 n9} ==> r8c3≠8, r8c1≠9
x-wing-in-rows: n9{r5 r8}{c5 c8} ==> r6c8≠9, r1c8≠9
whip[1]: b3n9{r2c9 .} ==> r6c9≠9
finned-x-wing-in-columns: n8{c3 c5}{r5 r9} ==> r9c6≠8
stte
denis_berthier
2010 Supporter
 
Posts: 4451
Joined: 19 June 2007
Location: Paris

Re: How many guardians

Postby champagne » Sun May 04, 2025 6:45 am

denis_berthier wrote:.
Generally speaking, the number of guardians is undefined if you don't specify at what moment in resolution you consider it.
Here, it's 7, be it after Singles or after whips[1]:

Nice to read this after recent posts
champagne
2017 Supporter
 
Posts: 7601
Joined: 02 August 2007
Location: France Brittany

Re: How many guardians

Postby P.O. » Sun May 04, 2025 7:27 am

why not start the resolution process of a grid in T&E(N,Singles) with the resolution state after T&E(N-1,Singles)
Code: Select all
after T&E(2,Singles)
12    6     4     3     5     18    2789  789   789           
5     3     7     689   289   489   246   1     2468           
8     12    9     67    27    147   3     5     246           
4     789   5     2     6     789   789   3     1             
36    789   36    1     789   5     24    789   24             
19    1789  2     789   4     3     5     6     789           
2379  29    38    789   1     6     789   4     5             
679   5     168   4     789   2     167   789   3             
679   4     168   5     3     789   16    2     6789           
124 candidates. 37 values.

.6435....537....1.8.9...35.4.526..31...1.5.....2.4356.....16.45.5.4.2..3.4.53..2.

basics:
Hidden Text: Show
Code: Select all
intersection:
((((1 0) (8 3 7) (1 6 8)) ((1 0) (9 3 7) (1 6 8))))

TRIPLET ROW: ((5 2 4) (7 8 9)) ((5 5 5) (7 8 9)) ((5 8 6) (7 8 9))
(((5 1 4) (3 6 7 9)) ((5 3 4) (3 6 8)) ((5 7 6) (2 4 7 8 9)) ((5 9 6) (2 4 7 8 9)))

intersection:
((((8 0) (4 2 4) (7 8 9)) ((8 0) (5 2 4) (7 8 9)) ((8 0) (6 2 4) (1 7 8 9))))

tridagon pattern in b5689 with one guardian n6r9c9 => r9c9 = 6
basics:
Hidden Text: Show
Code: Select all
( n6r9c9   n6r2c7   n6r3c4   n4r5c7   n2r5c9   n2r1c7   n2r2c5   n1r1c1   n2r3c2
  n7r3c5   n4r3c9   n1r3c6   n1r6c2   n2r7c1   n3r7c3   n3r5c1   n4r2c6   n6r5c3
  n6r8c1 )

intersection:
((((7 0) (8 7 9) (1 7 8 9)) ((7 0) (8 8 9) (7 8 9))))

Code: Select all
1     6     4     3     5     89    2     789   789           
5     3     7     89    2     4     6     1     89             
8     2     9     6     7     1     3     5     4             
4     789   5     2     6     789   789   3     1             
3     789   6     1     89    5     4     789   2             
79    1     2     789   4     3     5     6     789           
2     79    3     789   1     6     89    4     5             
6     5     18    4     89    2     1789  789   3             
79    4     18    5     3     789   189   2     6             
65 candidates. 56 values.

7r69c1 => r4c2 r6c4 <> 7
 r9c1=7 - c6n7{r9 r4}
ste.
P.O.
 
Posts: 1897
Joined: 07 June 2021

Re: How many guardians

Postby champagne » Sun May 04, 2025 7:38 am

P.O. wrote:why not start the resolution process of a grid in T&E(N,Singles) with the resolution state after T&E(N-1,Singles)

In my code, I start from T&E(1,Singles), so yes, this can be done to give indication of the hardness, but AFAIK, the T&E rule is not in the bag of manual solvers, so our experts should come with something else if there are nice paths.

your T&E(2,singles) let's hope to have eliminations of all guardians but one.
I proposed this puzzle just because I had still 6 guardians with my "T&E(1) filter.
champagne
2017 Supporter
 
Posts: 7601
Joined: 02 August 2007
Location: France Brittany

Re: How many guardians

Postby P.O. » Sun May 04, 2025 7:44 am

the resolution state after T&E(1,Singles) and T&E(2,Singles) are the same
P.O.
 
Posts: 1897
Joined: 07 June 2021

Re: How many guardians

Postby champagne » Sun May 04, 2025 7:53 am

P.O. wrote:the resolution state after T&E(1,Singles) and T&E(2,Singles) are the same

Thanks for this, I have to check what is wrong on my side.
I checked the skfr path, the "one guardian" appears in the path, after a long and boring sequence. Difficult to compare eliminations with a T&E view
champagne
2017 Supporter
 
Posts: 7601
Joined: 02 August 2007
Location: France Brittany

Re: How many guardians

Postby denis_berthier » Sun May 04, 2025 8:11 am

P.O. wrote:the resolution state after T&E(1,Singles) and T&E(2,Singles) are the same

Confirmed:
Code: Select all
   +----------------+----------------+----------------+
   ! 12   6    4    ! 3    5    18   ! 2789 789  789  !
   ! 5    3    7    ! 689  289  489  ! 246  1    2468 !
   ! 8    12   9    ! 67   27   147  ! 3    5    246  !
   +----------------+----------------+----------------+
   ! 4    789  5    ! 2    6    789  ! 789  3    1    !
   ! 36   789  36   ! 1    789  5    ! 24   789  24   !
   ! 19   1789 2    ! 789  4    3    ! 5    6    789  !
   +----------------+----------------+----------------+
   ! 2379 29   38   ! 789  1    6    ! 789  4    5    !
   ! 679  5    168  ! 4    789  2    ! 167  789  3    !
   ! 679  4    168  ! 5    3    789  ! 16   2    6789 !
   +----------------+----------------+----------------+

Only 1 guardian remaining.
denis_berthier
2010 Supporter
 
Posts: 4451
Joined: 19 June 2007
Location: Paris

Re: How many guardians

Postby denis_berthier » Sun May 04, 2025 8:14 am

champagne wrote: the T&E rule is not in the bag of manual solvers.

There's no T&E "rule"; it's a procedure.
I would say it's the only way of solving that the vast majority of manual solvers know. Most Sudoku players don't even know what a Pair is.
.
denis_berthier
2010 Supporter
 
Posts: 4451
Joined: 19 June 2007
Location: Paris

Re: How many guardians

Postby denis_berthier » Sun May 04, 2025 8:17 am

P.O. wrote:why not start the resolution process of a grid in T&E(N,Singles) with the resolution state after T&E(N-1,Singles)

Because it's absurd. The T&E(N-1) part can be much harder than applying the tridagon before it.
.
denis_berthier
2010 Supporter
 
Posts: 4451
Joined: 19 June 2007
Location: Paris

Re: How many guardians

Postby yzfwsf » Sun May 04, 2025 8:21 am

Code: Select all
Hidden Single: 3 in r2 => r2c2=3
Hidden Single: 5 in r3 => r3c8=5
Hidden Single: 4 in r8 => r8c4=4
Hidden Single: 5 in r8 => r8c2=5
Hidden Single: 3 in c9 => r8c9=3
Locked Candidates 2 (Claiming): 1 in c3 => r8c1<>1,r9c1<>1
M3-Wing: (7=2)r3c5 - r3c2 = (2-1)r1c1 = 1r1c6 => r1c6<>7
Locked Candidates 2 (Claiming): 7 in r1 => r3c9<>7
Grouped AIC Type 2: 4r4c1 = (4-3)r5c1 = (3-2)r7c1 = (2-7)r7c2 = 7r456c2 => r4c1<>7
Grouped Discontinuous Nice Loop: 4r4c1 = (4-3)r5c1 = (3-2)r7c1 = (2-9)r7c2 = r456c2 - (9=4)r4c1 => r4c1=4
Hidden Pair: 24 in r5c7,r5c9 => r5c7<>56789,r5c9<>6789
Hidden Single: 5 in r5 => r5c6=5
Hidden Single: 5 in r6 => r6c7=5
Hidden Single: 5 in r9 => r9c4=5
Uniqueness Test 7: 24 in r25c79; 2*biCell + 1*conjugate pairs(4c7) => r2c9 <> 2
AIC Type 1: 2r1c1 = (2-1)r3c2 = (1-4)r3c6 = r3c9 - (4=2)r5c9 => r1c9<>2
Grouped L3-Wing: 3r5c1 = (3-2)r7c1 = (2-7)r7c2 = 7r456c2 => r5c1<>7
Grouped L3-Wing: 3r5c1 = (3-2)r7c1 = (2-9)r7c2 = 9r456c2 => r5c1<>9
Triplet Oddagon Forcing Chain: Each true guardian of Triplet Oddagon will all lead To: r1c1<>2
 6r5c8 - 6r6c89 = 6r6c1 - (6=3792)r5789c1
 6r6c9 - 6r23c9 = 6r2c7 - (6=17892)r14789c7
 6r8c8 - (6=17892)r14789c7
 6r9c9 - (6=17892)r14789c7

After the above steps, the difficulty of the puzzle is reduced to skfr 7.6.
4 guardians forcing chain.
yzfwsf
 
Posts: 928
Joined: 16 April 2019

Re: How many guardians

Postby Cenoman » Sun May 04, 2025 3:30 pm

After basics (5 singles, locked 1r89c3)
Code: Select all
 +-----------------------+----------------------+----------------------------+
 |  12      6      4     |  3      5     1789   |  2789      789    2789     |
 |  5       3      7     |  689    289   489    |  24689     1      24689    |
 |  8       12     9     |  67     27    147    |  3         5      2467     |
 +-----------------------+----------------------+----------------------------+
 | a479    d789    5     |  2      6     789    |  4789      3      1        |
 | a34679  d789    368   |  1      789   5789   |  2456789   6789   246789   |
 |  1679   d1789   2     |  5789   4     3      |  56789     6789   6789     |
 +-----------------------+----------------------+----------------------------+
 | b2379   c2789   38    |  789    1     6      |  789       4      5        |
 |  679     5      168   |  4      789   2      |  16789     6789   3        |
 |  679     4      168   |  5789   3     5789   |  16789     2      6789     |
 +-----------------------+----------------------+----------------------------+

1. (43)r45c1 = (3-2)r7c1 = (2-7|9)r7c2 = (79)r456c2 => -79 r45c1; lcls, 4 placements

Code: Select all
 +----------------------+---------------------+-------------------------+
 | a1-2    6      4     |  3     5     1789   | h2789    789    2789    |
 |  5      3      7     |  689   289   489    | g24689   1      24689   |
 |  8      12     9     |  67    27    147    |  3       5      2467    |
 +----------------------+---------------------+-------------------------+
 |  4      789    5     |  2     6     789*   |  789*    3      1       |
 |  36     789    368   |  1     789*  5      | g24     d6789*  24      |
 | b1679   1789   2     |  789*  4     3      |  5      c6789  c6789*   |
 +----------------------+---------------------+-------------------------+
 |  2379   2789   38    |  789*  1     6      |  789*    4      5       |
 |  679    5      168   |  4     789*  2      | f16789  e6789*  3       |
 |  679    4      168   |  5     3     789*   | f16789   2     e6789*   |
 +----------------------+---------------------+-------------------------+

2. Tridagon (789)b5689 having four guardians: 6b69p59
Note that 6r6c9 and 6r8c8 have the same valence (both conjugates of 6r56c8) => considering three guardians is enough, e.g. (6)r5c8 = r8c8 = r9c9
(1)r1c1 = (1-6)r6c1 = r6c89 - (6)r5c8 == (6)b9p59 - r89c7 = (64-2)r25c7 (2)r1c7 => -2 r1c1; 15 placements

End with four rather simple steps:
Code: Select all
 +--------------------+-------------------+------------------------+
 |  1     6     4     |  3     5   b89    |  2      a789    789    |
 |  5     3     7     | c89    2    4     |  689     1      689    |
 |  8     2     9     |  6     7    1     |  3       5      4      |
 +--------------------+-------------------+------------------------+
 |  4    z789   5     |  2     6    789^  |  9-78    3      1      |
 |  3    y789  y68    |  1    x89   5     |  4      A6789   2      |
 |  679*  1     2     | d78-9* 4    3     |  5     Ae6789  e6789   |
 +--------------------+-------------------+------------------------+
 |  2     89-7  3     |  789*^ 1    6     |  789^    4      5      |
 |  679*  5     168   |  4    w89   2     |  16789  v6789   3      |
 |  679*  4     168   |  5     3    789^  |  16789   2      6789   |
 +--------------------+-------------------+------------------------+

3. (7)r7c4 = r6c4 - r6c1 = r89c1 => -7 r7c2 (locked 7r89c1 => -7 r6c1)
4. (9=6)r6c1 - (6=8)r5c3 - (8=9)r5c5 => -9 r6c4
5. (7)r7c7 = r7c4 - r9c6 = r4c6 => -7 r4c7
6. Kraken column (8)r1568c8
(8)r1c8 - r1c6 = r2c4 - r6c4 = (8)r6c89
(8)r56c8
(8)r8c8 - r8c5 = r5c5 - r5c23 = (8)r4c2
=>-8r4c7; ste
Cenoman
Cenoman
 
Posts: 3074
Joined: 21 November 2016
Location: France


Return to Puzzles