Really quite hard, the way I found uses almost the entire toolkit.
- Code: Select all
.--------------------.---------------------.--------------------.
| 12459 2579 12347 | 34579 #579 6 | 125789 25789 #579 |
| 2459 2579 247 | 1 8 #4579 |#2579 3 6 |
| 8 5679 1367 |#3579 2 3579 | 1579 #579 4 |
:--------------------+---------------------+--------------------:
| 26 4 5 | 2379 1679 123789 | 26789 2789 379 |
| 3 26 8 | 2579 5679 2579 | 25679 4 1 |
| 7 1 9 | 2345 56 23458 | 2568 258 35 |
:--------------------+---------------------+--------------------:
| 1259 3 127 | 6 #1579 12579 | 4 #579 8 |
| 4569 5679 467 | 8 3 #579 |#579 1 2 |
| 1259 8 127 |#2579 4 12579 | 3 6 #579 |
'--------------------'---------------------'--------------------'
TH 579#
- Code: Select all
.--------------------.---------------------.--------------------.
| 12459 #2579 12347 | 34579 579 6 | 125789 25789 579 |
|#2459 #2579 #247 | 1 8 #4579 |#2579 3 6 |
| 8 #5679 1367 | 3579 2 3579 | 1579 579 4 |
:--------------------+---------------------+--------------------:
| 26 4 5 | 2379 1679 123789 | 26789 2789 379 |
| 3 26 8 | 2579 5679 2579 | 25679 4 1 |
| 7 1 9 | 2345 56 23458 | 2568 258 35 |
:--------------------+---------------------+--------------------:
| 1259 3 127 | 6 1579 12579 | 4 579 8 |
| 4569 #5679 467 | 8 3 579 | 579 1 2 |
| 1259 8 127 | 2579 4 12579 | 3 6 579 |
'--------------------'---------------------'--------------------'
almost firework triple: 579r2c2 \ 579b1 + r2c267 r8c2
For the TH, if 4r2c6 or 2r2c7 is a true guardian, the FT is locked.
The other rectangle guardian is then false and r8c2 becomes a 5|7|9 which has to appear in b1p24568 and is eliminated out of the TH rectangle.
Hence another guardian is needed (3r3c4, 1r7c5, or 2r9c4). Therefore one of r379c6 becomes a TH external. With r258c6 we get 4r2c6 = 2r5c6.
- Code: Select all
.--------------------.---------------------.--------------------.
| 14–259d2579 134–27| 34579 579 6 | 125789 25789 579 |
|d2459 d2579 d247 | 1 8 a4579 | 2579 3 6 |
| 8 d5679 136–7 | 3579 2 3579 | 1579 579 4 |
:--------------------+---------------------+--------------------:
| 26 4 5 | 2379 1679 1238–79| 26789 2789 379 |
| 3 c26 8 | 579–2 5679 b2579 | 5679–2 4 1 |
| 7 1 9 | 2345 56 2348–5 | 2568 258 35 |
:--------------------+---------------------+--------------------:
| 1259 3 127 | 6 1579 12579 | 4 579 8 |
| 4569 579–6 467 | 8 3 579 | 579 1 2 |
| 1259 8 127 | 2579 4 12579 | 3 6 579 |
'--------------------'---------------------'--------------------'
4r2c6 = 2r5c6 – (2=6)r5c2 – (6=24579)b1p24568 – Loop => –2r5c47, –6r8c2, –2579b1p1379
Remember, there is a 5|7|9 in r8c6, in r(3|7|9)c6 and now even in r(2|5)c6. Together they form a triple. Hence –579r46c6.
Let A be the 5|7|9 in r379c6. Note that there can only be one because of the triple. We have proven (at least) one of 3r3c4, 1r7c5, and 2r9c4 to be true.
- Code: Select all
.-----------------.--------------------.--------------------.
| 14 2579 134 | 4579–3 579 6 | 125789 25789 579 |
| 2459 2579 27–4| 1 8 α4579 | 2579 3 6 |
| 8 5679 16–3|a3579 2 d3579 | 1579 579 4 |
:-----------------+--------------------+--------------------:
|δ26 4 5 | 2379 1679 1238 | 26789 2789 379 |
| 3 γ26 8 | 579 5679 β2579 | 5679 4 1 |
| 7 1 9 | 2345 56 2348 | 2568 258 35 |
:-----------------+--------------------+--------------------:
| 1259 3 127 | 6 b1579 c12579 | 4 579 8 |
|ε4569 579 ζ467 | 8 3 579 | 579 1 2 |
| 1259 8 127 |b2579 4 c12579 | 3 6 579 |
'-----------------'--------------------'--------------------'
3r3c4 = (1|2)b8p27 – (12=A)r79c6 – (A=3)r3c6 – Loop => –3r1c4, –3r3c3
4r2c6 = 2r5c6 – 2r5c2 = (2–6)r4c1 = (6–4)r8c1 = 4r8c3 => –4r2c3, stte
.....6......18..368...2...4.45......3.8....41719.......3.6..4.8...83..12.8..4.36.
23 Truths = {2N1 12358N2 2N3 39N4 17N5 235789N6 28N7 37N8 19N9}
65 Links = {2r25 3r3 4r2 5r123789 7r123789 9r123789 2c26 5c2456789 6c2 7c2456789 9c2456789 1b8 2b18 3b2 5b12389 7b12389 9b12389}
Marek