- Code: Select all
6 . 7 . 8 . 5 . 3
. 9 . . . . . 8 .
4 . . . . . . . 6
. . . 4 . . . . .
5 . . 2 . 1 . . .
9 . . . . 3 . . 8
3 . . . . . . . 7
. . . . . . . 6 .
7 . 5 . 1 . 8 . 9
*-----------*
|6.7|.8.|5.3|
|.93|...|.8.|
|458|.3.|..6|
|---+---+---|
|.3.|4.8|6.5|
|586|2.1|.34|
|974|..3|..8|
|---+---+---|
|3..|8..|.57|
|8..|...|36.|
|7.5|31.|8.9|
*-----------*
*-----------------------------------------------------------*
| 6 *12 7 | 19 8 249 | 5 49 3 |
|*12 9 3 | 567 456 456 | 47 8 *12 |
| 4 5 8 | 179 3 279 | 1279 1279 6 |
|-------------------+-------------------+-------------------|
| 12 3 12 | 4 79 8 | 6 79 5 |
| 5 8 6 | 2 79 1 | 79 3 4 |
| 9 7 4 | 56 56 3 | 12 12 8 |
|-------------------+-------------------+-------------------|
| 3 1246 129 | 8 2469 2469 | 124 5 7 |
| 8 #4-12 129 | 579 245 4579 | 3 6 *12 |
| 7 246 5 | 3 1 46 | 8 24 9 |
*-----------------------------------------------------------*
r1c2, r2c19, r8c29 with the values 12 form a kind of loop with an odd number of cells. If you would eliminate 4 from r8c2 and leave 12 in r8c2 there would be an impossible turbot-fish-constellation. r8c2 would stay empty if you apply the string-kite on 1 and 2 in r8c2. Furthermore there can't be five pairs of the same two values in a ring.
How is this strategy called here? I can remember carcul had described once something like this but I don't find it now.
Claudia