eleven wrote:I don't know now, which of the 3 that puzzle is, it was rated hardest with SE 9.1, if i remember right.
Steve K had solved it without pencilmarks (!), but the original thread was lost with the forum crash. See here:
An alternative way to solve the hard 17 clue
That's work of two geniuses, I'd say. Simply awesome. I had to dumb it down for myself by using candidates, which made it almost too easy. After working it out with your puzzle, I also tried it with the puzzle m_b_metcalf posted above:
12.7.......3...54..........2.........7..5.........4.3..6.8....7..4..3..1.........
Is it actually the same as yours in a morphed form, because it solved exactly the same way? Here's how I did it after learning your method (I'd tried it conventionally at first but got tired after a few ugly net moves):
After the basics and a Swordfish(5) + Skyscraper(5) we're here:
- Code: Select all
.-----------------.-----------------.----------------.
| 1 2 5 | 7 4 689 | 689 68 3 |
| 7 89 3 | 269 2689 1 | 5 4 2689 |
| 689 4 689 | 5 3 289 | 1 7 289 |
:-----------------+-----------------+----------------:
| 2 3 1689 | 169 689 7 | 689 5 4 |
| 4 7 689 | 3 5 689 | 2 1 689 |
| 5689 589 1689 | 1269 2689 4 | 7 3 689 |
:-----------------+-----------------+----------------:
| 3 6 2 | 8 1 5 | 4 9 7 |
| 589 589 4 | 269 7 3 | 68 268 1 |
| 89 1 7 | 4 269 269 | 3 268 5 |
'-----------------'-----------------'----------------'
Then I assigned variables {abc} to the group {689}, and replaced all occurrences of those in the pencil marks. The obvious but important part is to replace even one or two of those digits with all three variables (because we don't know which is which yet). (Btw, I didn't want to use "xyz" because "z" looks a bit like a 2.)
{689} -> {abc}
- Code: Select all
.------------------.-------------------.-----------------.
| 1 2 5 | 7 4 abc | abc abc 3 |
| 7 abc 3 | 2abc 2abc 1 | 5 4 2abc |
| abc 4 abc | 5 3 2abc | 1 7 2abc |
:------------------+-------------------+-----------------:
| 2 3 1abc | 1abc abc 7 | abc 5 4 |
| 4 7 abc | 3 5 abc | 2 1 abc |
| 5abc 5abc 1abc | 12abc 2abc 4 | 7 3 abc |
:------------------+-------------------+-----------------:
| 3 (6) 2 |(8) 1 5 | 4 (9) 7 |
| 5abc 5abc 4 | 2abc 7 3 | abc 2abc 1 |
| abc 1 7 | 4 2abc 2abc | 3 2abc 5 |
'------------------'-------------------'-----------------'
Then I used box 6 to plant our seeds (i.e. to place a, b, c):
- Code: Select all
.------------------.-------------------.-----------------.
| 1 2 5 | 7 4 abc | abc abc 3 |
| 7 abc 3 | 2abc 2abc 1 | 5 4 2abc |
| abc 4 abc | 5 3 2abc | 1 7 2abc |
:------------------+-------------------+-----------------:
| 2 3 1abc | 1abc abc 7 |(a) 5 4 |
| 4 7 abc | 3 5 abc | 2 1 (b) |
| 5abc 5abc 1abc | 12abc 2abc 4 | 7 3 (c) |
:------------------+-------------------+-----------------:
| 3 (6) 2 |(8) 1 5 | 4 (9) 7 |
| 5abc 5abc 4 | 2abc 7 3 | abc 2abc 1 |
| abc 1 7 | 4 2abc 2abc | 3 2abc 5 |
'------------------'-------------------'-----------------'
Elementary eliminations:
- Code: Select all
.------------------.-------------------.-----------------.
| 1 2 5 | 7 4 abc | bc abc 3 |
| 7 abc 3 | 2abc 2abc 1 | 5 4 2a |
| abc 4 abc | 5 3 2abc | 1 7 2a |
:------------------+-------------------+-----------------:
| 2 3 1bc | 1bc bc 7 |(a) 5 4 |
| 4 7 ac | 3 5 ac | 2 1 (b) |
| 5ab 5ab 1ab | 12ab 2ab 4 | 7 3 (c) |
:------------------+-------------------+-----------------:
| 3 (6) 2 |(8) 1 5 | 4 (9) 7 |
| 5abc 5abc 4 | 2abc 7 3 | bc 2abc 1 |
| abc 1 7 | 4 2abc 2abc | 3 2abc 5 |
'------------------'-------------------'-----------------'
Claiming (a) in box 3: -a r1c8 -> (a)r1c6
- Code: Select all
.------------------.-------------------.-----------------.
| 1 2 5 | 7 4 *a | bc bc 3 |
| 7 abc 3 | 2abc 2abc 1 | 5 4 2a |
| abc 4 abc | 5 3 2abc | 1 7 2a |
:------------------+-------------------+-----------------:
| 2 3 1bc | 1bc bc 7 |(a) 5 4 |
| 4 7 ac | 3 5 ac | 2 1 (b) |
| 5ab 5ab 1ab | 12ab 2ab 4 | 7 3 (c) |
:------------------+-------------------+-----------------:
| 3 (6) 2 |(8) 1 5 | 4 (9) 7 |
| 5abc 5abc 4 | 2abc 7 3 | bc 2abc 1 |
| abc 1 7 | 4 2abc 2abc | 3 2abc 5 |
'------------------'-------------------'-----------------'
stte:
- Code: Select all
.------------------.-------------------.-----------------.
| 1 2 5 | 7 4 *a |*c *b 3 |
| 7 *a 3 |*b *c 1 | 5 4 ^2 |
|*c 4 *b | 5 3 ^2 | 1 7 *a |
:------------------+-------------------+-----------------:
| 2 3 *c |^1 *b 7 |(a) 5 4 |
| 4 7 *a | 3 5 *c | 2 1 (b) |
|*b ^5 ^1 |^2 *a 4 | 7 3 (c) |
:------------------+-------------------+-----------------:
| 3 (6) 2 |(8) 1 5 | 4 (9) 7 |
|^5 *c 4 |*a 7 3 |*b ^2 1 |
|*a 1 7 | 4 ^2 *b | 3 *c 5 |
'------------------'-------------------'-----------------'
b|c <> 9 -> a=9
a|c <> 6 -> b=6
a|b <> 8 -> c=8
We're done. Have I misunderstood something or is it really that easy??? No even need to use the UR(s) with either puzzle (but it works too).