We know, thanks to Mladen, that there exists a grid with a minimal 40-clue puzzle (in fact it has at least 2):
- Code: Select all
123456789456789123798132564231675498584923617679841235367518942815294376942367851
1..4....9.5..8..2..981.2..4..1..5.9.58.92...7.798412.5.67518.4281.294.76......... 40
1..4....9.5..89.2..981.2..4..1..5.9.58..2...7.798412.5.67518.4281.294.76......... 40
And we also know that it has at least 38 x 37-clue puzzles:
- Code: Select all
...4....9.5..8.....981.2..42.1..5.9.58.9....7.79841..5.67518.4281.294.76......... 37
...4....9.5..89....981.2..42.1..5.9.58......7.79841..5.67518.4281.294.76......... 37
1..45...9.5..8.....981.2..42.1..5.9.58.9....7.798412.5..7.1..4281.294.76......... 37
1..45...9.5..89....981.2..42.1..5.9.58......7.798412.5..7.1..4281.294.76......... 37
1..4....9.5...9.2..981.2.64..1..5...58.92.....79.412.5.67518.4281.2.4.76......... 37
1..4....9.5..8.....981.2..4.....5.9.5..92..17.7984.2.5.67518.4281.294.76......... 37
1..4....9.5..89....981.2..4.....5.9.5...2..17.7984.2.5.67518.4281.294.76......... 37
1..4....9.5...9.2..981.2.64..1..5...58..2.....79.412.5.67518.4281.294.76......... 37
1..4....9.5.....2..981.2.64..1..5...58.92.....79.412.5.67518.4281.294.76......... 37
1..4....9.5.....2..981.2.64..1..5...5..92...7.79.412.5.67518.4281.294.76......... 37
1..45.....5..89.2..9.1.2..4..1....9.58..2...7.79.412.5.67518.4281.294.76......... 37
1..4....9.5..8..2..981.2.64..1..5.9.58.92.....7...12.5.67518.4281.294.76......... 37
1..4....9.5.....2..981.2.64..1..5.9.58.92.....7..412.5.67518.4281.294.76......... 37
1..45...9....8..2..9.1.2..4..1..5.9..8.92...7..98412.5.67518.4281.294.76......... 37
1..45...9....8..2..9.1.2..4..1..5.9..8.92...7.79.412.5.67518.4281.294.76......... 37
1..45...9....8..2..9.1.2..4..1....9.58.92...7.79.412.5.67518.4281.294.76......... 37
1..45...9....89.2..9.1.2..4..1..5.9..8..2...7..98412.5.67518.4281.294.76......... 37
1..45...9....89.2..9.1.2..4..1..5.9..8..2...7.79.412.5.67518.4281.294.76......... 37
1..45...9....89.2..9.1.2..4..1....9.58..2...7.79.412.5.67518.4281.294.76......... 37
1..45...9.5..8..2..9.1.2..4..1....9..8.92...7.79.412.5.67518.4281.294.76......... 37
1..45...9.5..89.2..9.1.2..4..1....9..8..2...7.79.412.5.67518.4281.294.76......... 37
1..4....9.5..8..2..981.2..4.....5.9.5..92..17.79.4.2.5.67518.4281.294.76......... 37
1..4....9.5..89.2..981.2..4.....5.9.5...2..17.79.4.2.5.67518.4281.294.76......... 37
1..4....9..6..9.2..981.2..4..1..5.9.58......7.798.12.5.67518.4281.294.76......... 37
1..45...9....8..2..981.2..4..1..5.9..8.9....7.79.412.5.67518.4281.294.76......... 37
1..45...9....89.2..981.2..4..1..5.9..8......7.79.412.5.67518.4281.294.76......... 37
1..45...9.5.....2..981.2..4..1..5.9....9....7.798412.5.67518.4281.294.76......... 37
1..45...9.5.....2..981.2..4..1....9....92...7.798412.5.67518.4281.294.76......... 37
1..45...9.5.....2..981.2..4..1....9.5..9....7.798412.5.67518.4281.294.76......... 37
1..45...9.5..8..2..981.2..4..1..5.9....9....7.79.412.5.67518.4281.294.76......... 37
1..45...9.5..8..2..981.2..4..1....9....92...7.79.412.5.67518.4281.294.76......... 37
1..45...9.5..8..2..981.2..4..1....9.5..9....7.79.412.5.67518.4281.294.76......... 37
1..45...9.5...9.2..981.2..4..1..5.9.........7.798412.5.67518.4281.294.76......... 37
1..45...9.5...9.2..981.2..4..1....9.....2...7.798412.5.67518.4281.294.76......... 37
1..45...9.5..89.2..981.2..4..1..5.9.........7.79.412.5.67518.4281.294.76......... 37
1..45...9.5..89.2..981.2..4..1....9.....2...7.79.412.5.67518.4281.294.76......... 37
1..4....9.5..8..2..981.2.64..1..5.9.5..92...7.7...12.5.67518.4281.294.76......... 37
1..4....9.5.....2..981.2.64..1..5.9.5..92...7.7..412.5.67518.4281.294.76......... 37
Now, consider the
"Continuity Question". Given a solution grid G, let L(G) be the least # of clues for a puzzle on G, and H(G) be the highest # of clues for a
minimal puzzle on G. Is there necessarily a K-clue minimal puzzle for
every K in the range [L, H]?
Mladen's 40C grid shows us that perhaps the answer
might well be NO - there is the suggestion that, for this grid, we might have a "hole", as for K = 38, 39 we have yet to find a minimal puzzle. But a NO requires that we demonstrate conclusively that no 38C or 39C puzzle exists on this grid.
The challenge is, how to determine whether this really is a hole, or whether we just have to look harder to fill it in!
And it's a tough problem, it seems - if a 39C exists on this grid it must be at some "distance" from the 40C puzzles. A {-3, +2} search on the 40C puzzles turns up nothing. I am looking at the feasibility of a {-4, +3} search (unless somebody already has done this?) but the numbers are intimidating ...
Anyway, hopefully this will spark some discussion!