There is no simple answer to this question. Basically looking for hidden sets is done without pencilmarks, they are only confusing - but cells with known pairs and locked candidates should be marked or remembered.
Some hidden triples or quads are easily spot, some are well hidden.
A good starting point is an empty minirow, where from the rest of the line or box several candidates are blocked.
E.g. look at r456c2, which cannot be 1258 from the box. 2 is already in column 2, so look, if 158 is blocked too for one of the 4 free cells. That's the case in row 9, and only r237c2 are possible for 258, building a hidden triple in column 2.
- Code: Select all
+-------+-------+-------+ +-------+-------+-------+
| . 7 2 | 8 . 4 | 1 . 3 | | . 7 2 | 8 . 4 | 1 . 3 |
| . . 4 | 2 . . | 5 7 . | | . . 4 | 2 . . | 5 7 . |
| . . . | . . . | 4 . . | | . . . | . . . | 4 . . |
+-------+-------+-------+ +-------+-------+-------+
| 2 . . | . 6 . | 8 . . | |*2 X . | . 6 . | 8 . . |
| 1 . 5 | 9 8 2 | 6 . 7 | | 1 X*5 | 9 8 2 | 6 . 7 |
| . . 8 | . 1 . | 2 . . | | . X*8 | . 1 . | 2 . . |
+-------+-------+-------+ +-------+-------+-------+
| . . 3 | . . 8 | 7 . . | | . . 3 | . . 8 | 7 . . |
| . 2 . | . . 9 | 3 . . | | .*2 . | . . 9 | 3 . . |
| 8 . . | 1 . 3 | 9 5 . | |*8 X . |*1 . 3 | 9*5 . |
+-------+-------+-------+ +-------+-------+-------+
Similar here: 169 blocked for (cannot be in) r4c789, and in r4c5 from column 5
- Code: Select all
+-------+-------+-------+ +-------+-------+-------+
| 7 . 3 | 8 6 5 | 4 1 . | | 7 . 3 | 8*6 5 | 4 1 . |
| . 1 . | 4 3 2 | . 7 . | | . 1 . | 4 3 2 | . 7 . |
| . . . | 9 1 7 | 8 . . | | . . . | 9*1 7 | 8 . . |
+-------+-------+-------+ +-------+-------+-------+
| . 7 2 | . . . | . . . | | . 7 2 | . X . | X X X |
| 5 8 . | . 2 . | . 9 1 | | 5 8 . | . 2 . | .*9*1 |
| . . . | . . . | 2 6 . | | . . . | . . . | 2*6 . |
+-------+-------+-------+ +-------+-------+-------+
| . . 9 | 2 5 8 | . . . | | . . 9 | 2 5 8 | . . . |
| . . . | . . . | . 5 . | | . . . | . . . | . 5 . |
| . 5 7 | 3 9 . | . . . | | . 5 7 | 3*9 . | . . . |
+-------+-------+-------+ +-------+-------+-------+
Here 359 both are blocked in row 9 and column 5 for box 8, leaving only 3 cells for them in box 8
- Code: Select all
+-------+-------+-------+ +-------+-------+-------+
| 1 3 4 | . 9 . | 8 2 6 | | 1 3 4 | .*9 . | 8 2 6 |
| 6 7 . | 4 . . | . 9 1 | | 6 7 . | 4 . . | . 9 1 |
| 9 . . | . . . | . . . | | 9 . . | . . . | . . . |
+-------+-------+-------+ +-------+-------+-------+
| 3 . 6 | 2 7 4 | . 8 9 | | 3 . 6 | 2 7 4 | . 8 9 |
| . 4 9 | 8 3 1 | 7 6 . | | . 4 9 | 8*3 1 | 7 6 . |
| 7 8 . | 6 5 9 | . . . | | 7 8 . | 6*5 9 | . . . |
+-------+-------+-------+ +-------+-------+-------+
| . . . | . 4 . | . . 8 | | . . . | . 4 . | . . 8 |
| 4 6 . | . . 8 | . 3 . | | 4 6 . | . X 8 | . 3 . |
| 8 9 3 | . . . | . 5 4 | | 8*9*3 | X X X | .*5 4 |
+-------+-------+-------+ +-------+-------+-------+
If you look at the last sample of SpAce, you easily find a quad this way:
r123c8 are blocked for 4789, and you can find the same numbers in row 5 and 9, leaving 4 cells for them in column 8.
If you note, that 7 is locked in r7c12 (can only be there), also 478 cannot be in r8c8, and you have a triple 478 in r468c8 (which does not help much here).
- Code: Select all
+-------+-------+-------+ +-------+-------+-------+
| . . 1 | 2 8 9 | 4 . 7 | | . . 1 | 2 8 9 |*4 X*7 |
| . . . | 7 1 . | . . 8 | | . . . | 7 1 . | . X*8 |
| . . 8 | 4 6 . | 9 . . | | . . 8 | 4 6 . |*9 X . |
+-------+-------+-------+ +-------+-------+-------+
| . 1 6 | . . 2 | . . . | | . 1 6 | . . 2 | . . . |
| 8 2 7 | 6 . 4 | 1 . 9 | |*8 2*7 | 6 .*4 | 1 X*9 |
| . . . | . . 1 | 2 . . | | . . . | . . 1 | 2 . . |
+-------+-------+-------+ +-------+-------+-------+
| . . 4 | 1 . 6 | 8 . . | | ^ ^*4 | 1 . 6 |*8 x . |
| 1 6 . | . 2 8 | . . . | | 1 6 . | . 2 8 | . . . |
| 3 8 2 | 9 4 7 | . . . | | 3*8 2 |*9*4*7 | . X . |
+-------+-------+-------+ +-------+-------+-------+
Now 2 samples, which are hard to spot.
You have to note, that 9 is locked in r89c8, thus r89c7 is blocked for 1239.
Out of them 129 are blocked for r2c7.
And with the 2(7) in r6c46 also for r6c7.
- Code: Select all
+-------+-------+-------+ +-------+-------+-------+
| 3 6 7 | 4 9 . | . 8 . | | 3 6 7 | 4 9 ⁵ | . 8 . |
| 9 2 4 | 1 8 . | . . 6 | |*9*2 4 |*1 8 ⁵ | X . 6 |
| 1 8 5 | . . . | . 4 . | | 1 8 5 | . . . | . 4 . |
+-------+-------+-------+ +-------+-------+-------+
| 5 3 6 | 9 1 4 | 7 2 8 | | 5 3 6 | 9 1 4 | 7 2 8 |
| 4 7 2 | 3 6 8 | . 5 . | | 4 7 2 | 3 6 8 | . 5 . |
| 8 1 9 | . 5 . | . . 4 | | 8*1*9 | ² 5 ² | X . 4 |
+-------+-------+-------+ +-------+-------+-------+
| 2 . 8 | . . . | 4 1 . | | 2 . 8 | . . . | 4 1 . |
| 6 4 1 | . . . | . . 3 | | 6 4 1 | . . . | X ⁹ 3 |
| 7 . 3 | . 4 1 | . . 2 | | 7 . 3 | . 4 1 | X ⁹ 2 |
+-------+-------+-------+ +-------+-------+-------+
Here we have 19 in r45c1 and a hidden pair 58 in r56c4.
Also 7 is locked in r13c8.
Dropping 19 and 58 there could be a possible hidden triple with digits 34567 in row 5.
And 347 can be found in columns 29 and with the locked 7 in c8 (can't be in r5c297).
- Code: Select all
+-------+-------+-------+ +-------+-------+-------+
| 4 . . | 1 . 2 | 3 . . | | 4 . . | 1 . 2 | 3 ⁷ . |
| 3 . . | 4 6 . | 8 1 . | | 3 . . | 4 6 . | 8 1 . |
| 6 1 . | . . 8 | 5 . 4 | | 6 1 . | q . 8 | 5 ⁷*4 |
+-------+-------+-------+ +-------+-------+-------+
| . 5 . | . . . | . . 8 | | p 5 . | q . . | . . 8 |
| . . . | . 2 . | . . . | | p X . | r 2 . | . X X |
| 7 . . | . . . | . 3 . | | 7 . . | r . . | .*3 . |
+-------+-------+-------+ +-------+-------+-------+
| 8 7 6 | 2 . . | 9 4 1 | | 8*7 6 | 2 . . | 9*4 1 |
| 2 4 1 | 7 8 9 | 6 5 3 | | 2*4 1 | 7 8 9 | 6 5*3 |
| 5 3 9 | 6 4 1 | 2 8 7 | | 5*3 9 | 6 4 1 | 2 8*7 |
+-------+-------+-------+ +-------+-------+-------+