help with xy wing

Post the puzzle or solving technique that's causing you trouble and someone will help

help with xy wing

Postby FEARDIZ » Mon Jun 12, 2006 6:01 pm

Code: Select all
 *-----------*
 |6.4|.9.|...|
 |...|416|.5.|
 |.9.|..8|..3|
 |---+---+---|
 |...|...|5.4|
 |..3|...|1..|
 |9.2|...|...|
 |---+---+---|
 |2..|8..|.7.|
 |.8.|329|...|
 |...|.7.|3.8|
 *-----------*


 *-----------*
 |654|793|281|
 |328|416|759|
 |197|258|643|
 |---+---+---|
 |87.|..2|5.4|
 |543|.87|1.2|
 |9.2|...|8.7|
 |---+---+---|
 |23.|8..|97.|
 |78.|329|41.|
 |4.9|.7.|328|
 *-----------*

 
 *--------------------------------------------------*
 | 6    5    4    | 7    9    3    | 2    8    1    |
 | 3    2    8    | 4    1    6    | 7    5    9    |
 | 1    9    7    | 2    5    8    | 6    4    3    |
 |----------------+----------------+----------------|
 | 8    7   + 16   | 169  36   2    | 5    369  4    |
 | 5    4    3    | 69   8    7    | 1    69   2    |
 | 9    16   2    | 156  346  145  | 8    36   7    |
 |----------------+----------------+----------------|
 | 2    3    + 15   | 8    46   14   | 9    7    + 56   |
 | 7    8    56   | 3    2    9    | 4    1    56   |
 | 4    16   9    | 156  7    15   | 3    2    8    |
 *--------------------------------------------------*




why does this not work for xy wing
xy=R7c3 xz=r7c9 yz=r4c3

thanks
John[/code]
FEARDIZ
 
Posts: 21
Joined: 28 March 2006

Postby Carcul » Mon Jun 12, 2006 6:12 pm

Because you don't have any cell that see both r4c3 and r7c9, which is how XY-Wing works.
However, the puzzle can be easily solved using uniqueness (if you take one step back) or using the TILA.

Carcul
Carcul
 
Posts: 724
Joined: 04 November 2005

Postby re'born » Mon Jun 12, 2006 6:25 pm

Incidentally, an easy solution from your grid:

Code: Select all
  *--------------------------------------------------*
 | 6    5    4    | 7    9    3    | 2    8    1    |
 | 3    2    8    | 4    1    6    | 7    5    9    |
 | 1    9    7    | 2    5    8    | 6    4    3    |
 |----------------+----------------+----------------|
 | 8    7    16   | 169  36   2    | 5    369  4    |
 | 5    4    3    | 69   8    7    | 1    69   2    |
 | 9    16   2    | 156  346  145  | 8    36   7    |
 |----------------+----------------+----------------|
 | 2    3   *15   | 8    46   14   | 9    7   *56   |
 | 7    8   *56   | 3    2    9    | 4    1   *56   |
 | 4    16   9    | 156  7    15   | 3    2    8    |
 *--------------------------------------------------*


is to note that r7c3=5 > r7c9 = 6 > r8c9 = 5 > r8c3 = 6, forming a deadly pattern. Therefore r7c3 = 1 and the puzzle solves with singles. It should be remarked that this reduction can be made earlier and it will still solve the puzzle. Using one naked pair and several singles you obtain the grid:

Code: Select all
 *--------------------------------------------------*
 | 6    5    4    | 7    9    3    | 2    8    1    |
 | 3    2    8    | 4    1    6    | 7    5    9    |
 | 1    9    7    | 2    5    8    | 6    4    3    |
 |----------------+----------------+----------------|
 | 8    7    16   | 169  36   2    | 5    369  4    |
 | 5    4    3    | 69   8    7    | 1    69   2    |
 | 9    16   2    | 156  346  145  | 8    36   7    |
 |----------------+----------------+----------------|
 | 2    3   *156  | 8    46   145  | 9    7   *56   |
 | 7    8   *56   | 3    2    9    | 4    1   *56   |
 | 4    16   9    | 156  7    15   | 3    2    8    |
 *--------------------------------------------------*


From here the unique rectangle in r78c39 is easier to spot and we immediately set r7c3=1.
re'born
 
Posts: 551
Joined: 31 May 2007

Postby Carcul » Mon Jun 12, 2006 6:31 pm

Uniqueness easily solves this puzzle. However, if one don't want to use such an obvious deduction here is another possibility:

Code: Select all
 *--------------------------------------------------*
 | 6    5    4    | 7    9    3    | 2    8    1    |
 | 3    2    8    | 4    1    6    | 7    5    9    |
 | 1    9    7    | 2    5    8    | 6    4    3    |
 |----------------+----------------+----------------|
 | 8    7    16   | 169  36   2    | 5    369  4    |
 | 5    4    3    | 69   8    7    | 1    69   2    |
 | 9    16   2    | 156  346  145  | 8    36   7    |
 |----------------+----------------+----------------|
 | 2    3    156  | 8    46   145  | 9    7    56   |
 | 7    8    56   | 3    2    9    | 4    1    56   |
 | 4    16   9    | 156  7    15   | 3    2    8    |
 *--------------------------------------------------*

=5=[r9c6]-5-[r9c4]=5=[r6c4]-{TILA(1): r7c3|r7c6|r6c6|r6c2|r4c3},
=> r9c6<>5 and it solve the puzzle.

Carcul
Carcul
 
Posts: 724
Joined: 04 November 2005

Postby FEARDIZ » Mon Jun 12, 2006 6:34 pm

Carcul wrote:Because you don't have any cell that see both r4c3 and r7c9, which is how XY-Wing works.
However, the puzzle can be easily solved using uniqueness (if you take one step back) or using the TILA.

Carcul


doesn't using the 15 at xy=R7c3 see both r4c3 and r7c9
FEARDIZ
 
Posts: 21
Joined: 28 March 2006

Postby Sped » Mon Jun 12, 2006 7:04 pm

Code: Select all
 
 *--------------------------------------------------*
 | 6    5    4    | 7    9    3    | 2    8    1    |
 | 3    2    8    | 4    1    6    | 7    5    9    |
 | 1    9    7    | 2    5    8    | 6    4    3    |
 |----------------+----------------+----------------|
 | 8    7    16   | 169  36*  2    | 5   (3)69 4    |
 | 5    4    3    | 69*  8    7    | 1    69*  2    |
 | 9    16   2    | 156 (3)46 145  | 8    36*  7    |
 |----------------+----------------+----------------|
 | 2    3    15   | 8    46   14   | 9    7    56   |
 | 7    8    56   | 3    2    9    | 4    1    56   |
 | 4    16   9    | 156  7    15   | 3    2    8    |
 *--------------------------------------------------*


6-(r4c3)-1-(r7c3)-5-(r7c9)-6

You've spotted an xy wing alright. It allows the exclusion of 6s in all cells that see both r4c3 and r7c9. Unfortunately there are no 6s to exclude in any of those cells.

Now, if you will consider a 4 cell xy chain, which is the same thing as an xy wing but one cell longer:

3-(r4c5)-6-(r5c4)-9-(r5c8)-6-(r6c8)-3

You can exclude 3s in all cells that see both r4c5 and r6c8. r4c8 and r6c5 lose their 3s.

In nice loop notation:

[r4c8]-3-[r4c5]-6-[r5c4]-9-[r5c8]-6-[r6c8]-3-[r4c8] => r4c8<>3
[r6c5]-3-[r6c8]-6-[r5c4]-9-[r5c8]-6-[r6c8]-3-[r6c5] => r6c5<>3


Code: Select all
 
 *--------------------------------------------------*
 | 6    5    4    | 7    9    3    | 2    8    1    |
 | 3    2    8    | 4    1    6    | 7    5    9    |
 | 1    9    7    | 2    5    8    | 6    4    3    |
 |----------------+----------------+----------------|
 | 8    7    16   | 169* 36   2    | 5    69*  4    |
 | 5    4    3    | 69*  8    7    | 1    69*  2    |
 | 9    16   2    | 156  46   145  | 8    36   7    |
 |----------------+----------------+----------------|
 | 2    3    15   | 8    46   14   | 9    7    56   |
 | 7    8    56   | 3    2    9    | 4    1    56   |
 | 4    16   9    | 156  7    15   | 3    2    8    |
 *--------------------------------------------------*


Then there's an easy to spot unique rectangle in r45c4 and r45c8. To avoid a deadly pattern (all 4 cells = 69) r4c4 must be 1.

It's all singles from there.

Simple Sudoku used colors on 1 and 6 and a swordfish on 6 and then an xy wing to solve it. Both the xy chain and the UR are easy to see and save a lot of work compared with Simple Sudoku's way of doing things.
Last edited by Sped on Sun Jul 02, 2006 1:03 pm, edited 1 time in total.
Sped
 
Posts: 126
Joined: 26 March 2006

Postby FEARDIZ » Mon Jun 12, 2006 7:36 pm

ok I see my problem I didn't know the exclude had to be buddies with BOTH xz and yz
FEARDIZ
 
Posts: 21
Joined: 28 March 2006

Deadly Pattern explained

Postby kdean63 » Sun Jul 02, 2006 12:54 pm

Please provide more details on this 'deadly pattern'. What's wrong with r7c3=5 > r7c9 = 6 > r8c9 = 5 > r8c3 = 6? Why can't each of these four cells be either 5 or 6? I don't see why r7c3 must be 1. thanks for some help on this.


rep'nA wrote:
is to note that r7c3=5 > r7c9 = 6 > r8c9 = 5 > r8c3 = 6, forming a deadly pattern. Therefore r7c3 = 1 and the puzzle solves with singles. It should be remarked that this reduction can be made earlier and it will still solve the puzzle. Using one naked pair and several singles you obtain the grid:

Code: Select all
 *--------------------------------------------------*
 | 6    5    4    | 7    9    3    | 2    8    1    |
 | 3    2    8    | 4    1    6    | 7    5    9    |
 | 1    9    7    | 2    5    8    | 6    4    3    |
 |----------------+----------------+----------------|
 | 8    7    16   | 169  36   2    | 5    369  4    |
 | 5    4    3    | 69   8    7    | 1    69   2    |
 | 9    16   2    | 156  346  145  | 8    36   7    |
 |----------------+----------------+----------------|
 | 2    3   *156  | 8    46   145  | 9    7   *56   |
 | 7    8   *56   | 3    2    9    | 4    1   *56   |
 | 4    16   9    | 156  7    15   | 3    2    8    |
 *--------------------------------------------------*


From here the unique rectangle in r78c39 is easier to spot and we immediately set r7c3=1.
kdean63
 
Posts: 3
Joined: 14 January 2006

Postby underquark » Sun Jul 02, 2006 5:47 pm

Allowing:
Code: Select all
56     56
56     56
or any
Code: Select all
XY     XY
XY     XY

would lead to an abiguity over placement of X and Y such that the puzzle would no longer have a unique solution and violate the usual rules of Sudoku:
Code: Select all
X     Y     or   Y     X      are possible here
Y     X          X     Y

Thus when this pattern emerges one can exclude X and Y from the cell that has the extra candidate Z:
Code: Select all
XYZ     XY     becomes     Z      XY
XY      XY                 XY     XY
underquark
 
Posts: 299
Joined: 06 September 2005

A guide

Postby keith » Sun Jul 02, 2006 7:00 pm

You can read about Unique Rectangles here:

http://forum.enjoysudoku.com/viewtopic.php?t=4204

Keith
keith
2017 Supporter
 
Posts: 221
Joined: 03 April 2006


Return to Help with puzzles and solving techniques