It looks like you've missed an easy elimination : a claiming pair of 6's in r13c2 removes the 6 in r3c3.
Next, a 2 stringed Kite (or simple X chain if you like) in 3's solves r3c3 :
- Code: Select all
*--------------------------------------------------------------*
| 7 36 1 | 5 2 4 | 36 8 9 |
| 4 2 5 | 9 36 8 | 36 7 1 |
| 9 368 8-3 | 7 1 d36 | 4 5 2 |
|--------------------+--------------------+--------------------|
| 8 1 a36 | 4 b36 5 | 2 9 7 |
| 26 7 269 | 1 8 69 | 5 3 4 |
| 35 59 4 | 2 7 c39 | 8 1 6 |
|--------------------+--------------------+--------------------|
| 1 4 7 | 8 5 2 | 9 6 3 |
| 56 59 69 | 3 4 1 | 7 2 8 |
| 23 38 238 | 6 9 7 | 1 4 5 |
*--------------------------------------------------------------*
If you are not familiar with Kites (or X chains), follow the 3's in cells a-b-c-d or reverse the order to d-c-b-a and you'll conclude that at least one of a or d must be 3, so 3 can be removed from r3c3.
This gets you to here (via a hidden single 8 in r9c2), which is called a BUG+1 situation. The * cell r5c3 must be 6 to avoid a BUG situation, which solves the puzzle.
- Code: Select all
*-----------------------------------------------------*
| 7 36 1 | 5 2 4 | 36 8 9 |
| 4 2 5 | 9 36 8 | 36 7 1 |
| 9 36 8 | 7 1 36 | 4 5 2 |
|-----------------+-----------------+-----------------|
| 8 1 36 | 4 36 5 | 2 9 7 |
| 26 7 *6-29 | 1 8 69 | 5 3 4 |
| 35 59 4 | 2 7 39 | 8 1 6 |
|-----------------+-----------------+-----------------|
| 1 4 7 | 8 5 2 | 9 6 3 |
| 56 59 69 | 3 4 1 | 7 2 8 |
| 23 8 23 | 6 9 7 | 1 4 5 |
*-----------------------------------------------------*
If you don't understand the BUG principle read about it
here.
Leren