## Help with Continuous not so Nice Loop

Post the puzzle or solving technique that's causing you trouble and someone will help

### Help with Continuous not so Nice Loop

Hello,

I am studying certain techniques used in solving an old puzzle. In the next configuration, I understood the loop move (in my view is
Hidden Text: Show
(7=1385)r3468c3-(5)r2c3= r2c2-r5c2=(5)r5c8-(5=378)b9p458 Loop => many eliminations
Often I use Hodoku to double-check every step (mainly to check eliminations). Here I do not understand its output. Never liked Nice Loop Notation, but this does no seem to be the problem.

Code: Select all
`.-------------------------.-----------------.------------------------.| 1238    389    -12-3-89 | 6   78     4    |  5      -3789    137   || 7      *589    *5-89    | 3   1      2    |  489     489     6     || 4       6      B138     | 9   5      78   |  178     2       137   |:-------------------------+-----------------+------------------------:| 3568    3-578  B358     | 45  36789  3789 |  24679   1       257   || 9      *57      4       | 2   67     1    |  3      *567     8     || 13568   2      B1358    | 45  36789  3789 |  4679    4-5679  57    |:-------------------------+-----------------+------------------------:| 23      1       2-379   | 8   39     5    |  267    -367     4     || 358     4      B3578    | 1   2      6    | A78     A3578    9     || 2358    3-589   6       | 7   4      39   |  12-8   A358     12-35 |'-------------------------'-----------------'------------------------'`

Grouped Continuous Nice Loop:
1/3/5/8 9= r2c3 =5= r2c2 -5- r5c2 =5= r5c8 -5- ALS:r8c78,r9c8 -7- ALS:r3468c3 =9= r2c3 =5 => many elimination.

I have indicated in bold the part that I don't understand (among other things that 9 is not even part of the ALS and how come 9 and 5 are strongly linked in r3c3).

Regards,
JCO
jco

Posts: 91
Joined: 09 June 2020

### Re: Help with Continuous not so Nice Loop

Hi jco,

jco wrote:
Hodoku wrote:
grid: Show
Code: Select all
`.-------------------------.-----------------.------------------------.| 1238    389    -12-3-89 | 6   78     4    |  5      -3789    137   || 7      *589    *5-89    | 3   1      2    |  489     489     6     || 4       6      B138     | 9   5      78   |  178     2       137   |:-------------------------+-----------------+------------------------:| 3568    3-578  B358     | 45  36789  3789 |  24679   1       257   || 9      *57      4       | 2   67     1    |  3      *567     8     || 13568   2      B1358    | 45  36789  3789 |  4679    4-5679  57    |:-------------------------+-----------------+------------------------:| 23      1       2-379   | 8   39     5    |  267    -367     4     || 358     4      B3578    | 1   2      6    | A78     A3578    9     || 2358    3-589   6       | 7   4      39   |  12-8   A358     12-35 |'-------------------------'-----------------'------------------------'`

Grouped Continuous Nice Loop:
1/3/5/8 9= r2c3 =5= r2c2 -5- r5c2 =5= r5c8 -5- ALS:r8c78,r9c8 -7- ALS:r3468c3 =9= r2c3 =5 => many elimination.

I have indicated in bold the part that I don't understand (among other things that 9 is not even part of the ALS and how come 9 and 5 are strongly linked in r3c3).

You're right. It doesn't make any sense. I almost never read Hodoku's output anyway because it's so unreadable (and sometimes faulty, like here). I just look at the pattern, and if need be, write my own notation of it. In this case I wrote:

Code: Select all
`.-------------------------.-----------------.-------------------------.| 1238    389     29-138  | 6   78     4    |  5       789-3   137    || 7      b589    a59-8    | 3   1      2    |  489     489     6      || 4       6      f138     | 9   5      78   |  178     2       137    |:-------------------------+-----------------+-------------------------:| 3568    378-5  f5'38    | 45  36789  3789 |  24679   1       257    || 9      c57      4       | 2   67     1    |  3      d567     8      || 13568   2      f5'138   | 45  36789  3789 |  4679    4679-5  57     |:-------------------------+-----------------+-------------------------:| 23      1       279-3   | 8   39     5    |  267     67-3     4     || 358     4      f5'38'7  | 1   2      6    | e7'8    e7'38'5   9     || 2358    389-5   6       | 7   4      39   |  12-8   e38'5     125-3 |'-------------------------'-----------------'-------------------------'(5)r2c3 = r2c2 - r5c2 = r5c8 - (5=38'7)b9p458 - (7=138'5)r3468c3 - loop => -12 elims`

...which is equivalent to yours:

(7=1385)r3468c3-(5)r2c3= r2c2-r5c2=(5)r5c8-(5=378)b9p458 Loop => many eliminations

I just used a different starting point to match Hodoku's move as closely as possible. In any case, 9r2c3 plays no part.
-SpAce-: Show
Code: Select all
`   *             |    |               |    |    *        *        |=()=|    /  _  \    |=()=|               *            *    |    |   |-=( )=-|   |    |      *     *                     \  ¯  /                   *    `

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."

SpAce

Posts: 2672
Joined: 22 May 2017