Surprisingly, this puzzle
can be solved with logic.
As Ron stated, one of rows 1, 2 and 3 is missing.
Row 3 is the only choice that would allow the original puzzle to be 180 degrees symmetrical:
- Code: Select all
. . 8|. 3 .|. . .
. 6 .|9 . .|. 4 .
? . .|? . .|. . .
-----+-----+-----
7 5 2|3 8 9|4 6 1
3 8 .|. . .|. . 5
. 1 9|. 2 .|8 7 3
-----+-----+-----
. . .|. . 3|. . 4
. 2 .|. . 1|. 8 .
. . .|. 4 .|1 . .
The original puzzle must have been something like this:
- Code: Select all
. . 8|. 3 .|. . .
. 6 .|9 . .|. 4 .
? . .|? . .|. . .
-----+-----+-----
7 . .|. 8 .|4 6 .
3 . .|. . .|. . 5
. 1 9|. 2 .|. . 3
-----+-----+-----
. . .|. . 3|. . 4
. 2 .|. . 1|. 8 .
. . .|. 4 .|1 . .
For r3c1 we have the candidates 1,2,5,7
For r3c4 we have the candidates 1,2,4,5,6,7,8
When r3c1=1, r3c4=2,4,5,6,8
When r3c1=2, r3c4=1,4,5,6,7,8
When r3c1=5, r3c4=1,2,4,6,7,8
When r3c1=9, r3c4=1,2,4,5,6,7,8
All but one combination of these, when used as clues, lead to multiple solutions, the only valid combination is r3c1=5 & r3c4=7.
So this must be the original puzzle:
- Code: Select all
. . 8|. 3 .|. . .
. 6 .|9 . .|. 4 .
5 . .|7 . .|. . .
-----+-----+-----
7 . .|. 8 .|4 6 .
3 . .|. . .|. . 5
. 1 9|. 2 .|. . 3
-----+-----+-----
. . .|. . 3|. . 4
. 2 .|. . 1|. 8 .
. . .|. 4 .|1 . .
Goldplate is stuck here:
- Code: Select all
. . 8|. 3 .|. . .
. 6 .|9 . .|. 4 .
5 . .|7 . .|. . .
-----+-----+-----
7 5 2|3 8 9|4 6 1
3 8 .|. . .|. . 5
. 1 9|. 2 .|8 7 3
-----+-----+-----
. . .|. . 3|. . 4
. 2 .|. . 1|. 8 .
. . .|. 4 .|1 . .
From the original puzzle, only singles will lead to this position, so we cannot be sure that the
Goldplate has found the elimination moves.
Here is the first move:
Digit 4 is locked in box 1 + column 2. Eliminate 4 from r1c1 and r3c3.
- Code: Select all
.------------------.------------------.------------------.
| 12-49!479 8 | 12456 3 2456 | 25679 1259 2679 |
| 12 6 137 | 9 15 258 | 2357 4 278 |
| 5 !349 13-4 | 7 16 2468 | 2369 1239 2689 |
:------------------+------------------+------------------:
| 7 5 2 | 3 8 9 | 4 6 1 |
| 3 8 46 | 146 167 467 | 29 29 5 |
| 46 1 9 | 456 2 456 | 8 7 3 |
:------------------+------------------+------------------:
| 1689 79 1567 | 2568 5679 3 | 25679 259 4 |
| 469 2 34567| 56 5679 1 | 35679 8 679 |
| 689 379 3567 | 2568 4 25678| 1 2359 2679 |
'------------------'------------------'------------------'
This is the second move:
- Code: Select all
.------------------.------------------.------------------.
| 129 479 8 | 12456 3 2456 | 25679 1259 2679 |
| 12 6 *137 | 9 15 258 |*2357 4 278 |
| 5 349 1-3 | 7 16 2468 | 2-369 1239 2689 |
:------------------+------------------+------------------:
| 7 5 2 | 3 8 9 | 4 6 1 |
| 3 8 46 | 146 167 467 | 29 29 5 |
| 46 1 9 | 456 2 456 | 8 7 3 |
:------------------+------------------+------------------:
| 1689 79 1567 | 2568 5679 3 | 25679 259 4 |
| 469 2 *34567| 56 5679 1 |*35679 8 679 |
| 689 379 -3567 | 2568 4 2567 | 1 2359 2679 |
'------------------'------------------'------------------'
X-Wing for digit 3 in rows 2+8, columns 3+7. Eliminate 3 from r3c3, r3c7, r9c3.
From here, the puzzle can be solved with singles and locked candidates.
Figuring this out is in itself a more interesting puzzle
Ruud