Help on a grid

Post the puzzle or solving technique that's causing you trouble and someone will help

Help on a grid

Postby asdf007 » Fri Oct 26, 2007 12:22 pm

I'm stuck on a supposedly "easy" sudoku.

Code: Select all
. 5 2 | 8 1 4 | 3 . .
8 4 3 | 6 9 7 | 5 1 2
9 . 1 | 5 2 3 | . 8 .
------+-------+------
5 . 9 | . 7 8 | . . 3
. 3 6 | . 5 2 | 8 . .
4 . 8 | 9 3 6 | . 5 1
------+-------+------
. 9 5 | 7 4 1 | . 3 8
3 8 4 | 2 6 9 | 1 7 5
. . 7 | 3 8 5 | 9 . .


Any tip?

Thanks in advance.
asdf007
 
Posts: 2
Joined: 26 October 2007

Postby RW » Fri Oct 26, 2007 1:19 pm

As you didn't post a pencilmark grid, I'll assume you aren't using them. To solve it without pm's, you'll need some kind of short chain, so let's first make some observations:

Code: Select all
. 5 2 | 8 1 4 | 3 . .
8 4 3 | 6 9 7 | 5 1 2
9 . 1 | 5 2 3 | . 8 .
------+-------+------
5 . 9 | . 7 8 | . . 3
. 3 6 | . 5 2 | 8 . .
4 . 8 | 9 3 6 | . 5 1
------+-------+------
. 9 5 | 7 4 1 | . 3 8
3 8 4 | 2 6 9 | 1 7 5
. . 7 | 3 8 5 | 9 . .

r1c8 may only be 6 or 9.
r5c8 may only be 4 or 9.
In row 4, digit 6 must be in column 7 or 8.

So what can we read from this?

Either r5c8=4, or r5c8=9 => r1c8=6 => r4c7=6

In both cases r4c7<>4.

Another way to look at it: If r4c7=4 => r5c8=9 => r1c8=6 => no 6 in row 4 => r4c7<>4.

The rest should be easy.

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby asdf007 » Fri Oct 26, 2007 2:16 pm

Thank you.:)

I'm actually using pencil mark. If you have a solution using them, I'll be glad to know about it.

Thanks again in advance.
asdf007
 
Posts: 2
Joined: 26 October 2007

Postby RW » Fri Oct 26, 2007 2:32 pm

It's always good to post your current pms if you are using them, so other people know how much you have already been able to eliminate. In your grid, there's first two x-wings and after them you get here:

Code: Select all
 *--------------------------------------------------*
 | 67   5    2    | 8    1    4    | 3    69   79   |
 | 8    4    3    | 6    9    7    | 5    1    2    |
 | 9    67   1    | 5    2    3    | 47   8    46   |
 |----------------+----------------+----------------|
 | 5    12   9    | 14   7    8    | 46+2 26+4 3    |
 | 17   3    6    | 14   5    2    | 8    49   79   |
 | 4    27   8    | 9    3    6    | 27   5    1    |
 |----------------+----------------+----------------|
 | 26   9    5    | 7    4    1    | 26   3    8    |
 | 3    8    4    | 2    6    9    | 1    7    5    |
 | 12   16   7    | 3    8    5    | 9    24   46   |
 *--------------------------------------------------*

This is a BUG+2 grid, the extra candidates are separated with '+'. If this is an unique puzzle, then either r4c7=2 or r4c8=4. From this immediately follows that r4c7<>4 and r4c8<>2.

Of course, even with pms you may use the chain in my first post to get around the x-wings and not have to assume uniqueness. But the BUG cannot really be used without pms.

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby udosuk » Fri Oct 26, 2007 2:58 pm

Once again, there is a nice solution without uniqueness assumption.

After the x-wings:
Code: Select all
 *--------------------------------------------------*
 | 67   5    2    | 8    1    4    | 3    69   79   |
 | 8    4    3    | 6    9    7    | 5    1    2    |
 | 9    67   1    | 5    2    3    | 47   8    46   |
 |----------------+----------------+----------------|
 | 5   @12   9    | 14   7    8    | 246 #246  3    |
 |-17   3    6    | 14   5    2    | 8    49   79   |
 | 4    27   8    | 9    3    6    | 27   5    1    |
 |----------------+----------------+----------------|
 | 26   9    5    | 7    4    1    | 26   3    8    |
 | 3    8    4    | 2    6    9    | 1    7    5    |
 |@12  -16   7    | 3    8    5    | 9   #24   46   |
 *--------------------------------------------------*

On c8 you have a strong link of 2 in r49c8 (one of these must be 2).
In the mean time r4c2 and r9c1 are both 1|2.
The 2 on c8 will force one of these two cells to be 1.
So any cell seeing r4c2 and r9c1 simultaneously must not be 1.
As a result, you can eliminate 1 from r5c1 and r9c2.:idea:

This technique is called a Y-wing/W-wing/semi-remote-pair (different people call it by different names:) ).
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby RW » Fri Oct 26, 2007 3:28 pm

Why go through all the trouble with the x-wings if you wish to make eliminations by focusing on those cells?

After the locked candidates:
Code: Select all
 *--------------------------------------------------*
 | 67   5    2    | 8    1    4    | 3    69   679  |
 | 8    4    3    | 6    9    7    | 5    1    2    |
 | 9    67   1    | 5    2    3    | 467  8    467  |
 |----------------+----------------+----------------|
 | 5   *12   9    | 14   7    8    | 246 -246  3    |
 |#17   3    6    | 14   5    2    | 8    49   479  |
 | 4    27   8    | 9    3    6    | 27   5    1    |
 |----------------+----------------+----------------|
 | 26   9    5    | 7    4    1    | 26   3    8    |
 | 3    8    4    | 2    6    9    | 1    7    5    |
 |#126  16   7    | 3    8    5    | 9   *246  46   |
 *--------------------------------------------------*

There's a strong link of 1 in r59c1 and a strong link of 2 in r9c18.

[r4c2]-1-[r5c1]=1=[r9c1]=2=[r9c8]
(If r4c2=1 => r9c1=1 => r9c8=2)

If r4c2<>2, then r9c8=2. Any cell that can see both r4c2 and r9c8 must not be 2.

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby Carcul » Thu Nov 29, 2007 9:34 pm

Code: Select all
 *--------------------------------------------------*
 | 67   5    2    | 8    1    4    | 3    69   679  |
 | 8    4    3    | 6    9    7    | 5    1    2    |
 | 9    67   1    | 5    2    3    | 467  8    467  |
 |----------------+----------------+----------------|
 | 5    12   9    | 14   7    8    | 246  246  3    |
 | 17   3    6    | 14   5    2    | 8    49   479  |
 | 4    27   8    | 9    3    6    | 27   5    1    |
 |----------------+----------------+----------------|
 | 26   9    5    | 7    4    1    | 26   3    8    |
 | 3    8    4    | 2    6    9    | 1    7    5    |
 | 126  126  7    | 3    8    5    | 9    246  46   |
 *--------------------------------------------------*

Suppose r4c8 is not 6. Then we would have:

1) [r6c7]-2-[r7c7]-6-[r4c78]-2-[r6c7]
2) [r6c7]-7-[r5c89]-4-[r4c8]-2-[r9c8]=2=[r7c7]=6=[r7c1]-6-[r1c1]=6=
=[r3c2]=7=[r6c2]-7-[r6c7]

Therefore, r4c8 must be 6 and the puzzle is solved.
Carcul
 
Posts: 724
Joined: 04 November 2005

Re: Help on a grid

Postby wintder » Thu Nov 29, 2007 11:00 pm

asdf007 wrote:I'm stuck on a supposedly "easy" sudoku.

Code: Select all
. 5 2 | 8 1 4 | 3 . .
8 4 3 | 6 9 7 | 5 1 2
9 . 1 | 5 2 3 | . 8 .
------+-------+------
5 . 9 | . 7 8 | . . 3
. 3 6 | . 5 2 | 8 . .
4 . 8 | 9 3 6 | . 5 1
------+-------+------
. 9 5 | 7 4 1 | . 3 8
3 8 4 | 2 6 9 | 1 7 5
. . 7 | 3 8 5 | 9 . .


Any tip?

Thanks in advance.


I'd like to see the original. The posted position is too far from easy to be credible.
wintder
 
Posts: 297
Joined: 24 April 2007

Postby Sped » Sat Dec 01, 2007 5:13 pm

After simple stuff and a couple of X Wings:

Code: Select all
 
 *--------------------------------------------------*
 | 67   5    2    | 8    1    4    | 3    69   79   |
 | 8    4    3    | 6    9    7    | 5    1    2    |
 | 9    67   1    | 5    2    3    | 47*  8   (4)6  |
 |----------------+----------------+----------------|
 | 5    12   9    | 14   7    8    | 246  246  3    |
 | 17   3    6    | 14   5    2    | 8    49   79   |
 | 4    27   8    | 9    3    6    | 27^  5    1    |
 |----------------+----------------+----------------|
 | 26   9    5    | 7    4    1    | 26^  3    8    |
 | 3    8    4    | 2    6    9    | 1    7    5    |
 | 12   16   7    | 3    8    5    | 9    24   46*  |
 *--------------------------------------------------*


The XY chain: 4-(r3c7)-7-(r6c7)-2-(r7c7)-6-(r9c9)-4
eliminates the 4 in r3c9 because either r3c7 or r9c9 must be a 4, and r3c9 sees both. It's all singles from there.

Above, the ends of the chain are marked with "*", the other cells in the chain are marked with "^", and the candidate to be excluded has () around it.

As a nice loop:

[r3c9]-4-[r3c7]-7-[r6c7]-2-[r7c7]-6-[r9c9]-4-[r3c9] => r3c9<>4
Sped
 
Posts: 126
Joined: 26 March 2006


Return to Help with puzzles and solving techniques