- Code: Select all
*-----------------------------------------------------------*
| 3 7 2 | 159 589 18 | 4 6 19 |
| 4 56 56 | 7 359 13 | 19 8 2 |
| 9 8 1 | 4 2 6 | 3 5 7 |
|-------------------+-------------------+-------------------|
| 8 19 3 | 6 4 5 | 2 7 19 |
| 2 149 7 | 13 38 138 | 6 149 5 |
| 16 1456 56 | 2 7 9 | 8 14 3 |
|-------------------+-------------------+-------------------|
| 7 3 9 | 8 1 4 | 5 2 6 |
| 5 16 8 | 39 369 2 | 7 19 4 |
| 16 2 4 | 59 569 7 | 19 3 8 |
*-----------------------------------------------------------*
You'll notice that the 1s in box 5 are restricted to row 5. That allows you to exclude 1s from r5c2 and r5c8. Resulting in:
- Code: Select all
*-----------------------------------------------------------*
| 3 7 2 | 159 589 18 | 4 6 19 |
| 4 56 56 | 7 359 13 | 19 8 2 |
| 9 8 1 | 4 2 6 | 3 5 7 |
|-------------------+-------------------+-------------------|
| 8 19 3 | 6 4 5 | 2 7 19 |
| 2 49 7 | 13 38 138 | 6 49 5 |
| 16 1456 56 | 2 7 9 | 8 14 3 |
|-------------------+-------------------+-------------------|
| 7 3 9 | 8 1 4 | 5 2 6 |
| 5 16 8 | 39 369 2 | 7 19 4 |
| 16 2 4 | 59 569 7 | 19 3 8 |
*-----------------------------------------------------------*
If you color on 1s you get massive eliminations which bust the puzzle wide open:
- Code: Select all
*-----------------------------------------------------------*
| 3 7 2 | 159 589 18 | 4 6 19A |
| 4 56 56 | 7 359 13A | 19B 8 2 |
| 9 8 1 | 4 2 6 | 3 5 7 |
|-------------------+-------------------+-------------------|
| 8 19A 3 | 6 4 5 | 2 7 19B |
| 2 49 7 | 13 38 138 | 6 49 5 |
| 16A 1456 56 | 2 7 9 | 8 14A 3 |
|-------------------+-------------------+-------------------|
| 7 3 9 | 8 1 4 | 5 2 6 |
| 5 16A 8 | 39 369 2 | 7 19B 4 |
| 16B 2 4 | 59 569 7 | 19A 3 8 |
*-----------------------------------------------------------*
Conjugate pairs of 1s are marked A and B above. The As share a group in box 4 and in row 6. So the As cannot be 1s. Eliminate 1s from all the A cells and set all the B cells to 1.
It's all singles after that.
An alternative solution would be the XY chain:
9-(r9c7)-1-(r9c1)-6-(r6c1)-1-(r4c2)-9-(r4c9)-1-(r1c9)-9
which eliminates the 9 in r2c7, reducing the puzzle to singles.