Here's what I have found:
- Code: Select all
*----------------------------------------------------------*
| 2456 24567 2467 | 1457 1357 1345 | 8 9 14 |
| 9 1 3 | 457 8 6 | 457 57 2 |
| 8 457 47 | 2 9 145 | 3 157 6 |
|----------------------+--------------------+--------------|
| 246 24679 24679 | 3 1567 158 | 469 168 14 |
| 34 349 5 | 168 126 128 | 49 168 7 |
| 1 67 8 | 67 4 9 | 2 3 5 |
|----------------------+--------------------+--------------|
| 23456 234569 12469 | 1456 12356 12345 | 567 567 8 |
| 256 8 126 | 9 1256 7 | 56 4 3 |
| 7 3456 46 | 4568 356 3458 | 1 2 9 |
*----------------------------------------------------------*
1. This first step is simply coloring:
[r4c6]-1-[r3c6]=1=[r3c8]-1-[r1c9]=1=[r4c9]-1-[r4c6], => r4c6<>1.
2. Now we have a discontinuous multiple implication nice loop:
[r6c4]=7=[r6c2]=6=[r4c123]-6-[r45c7]-4-[r2c7]=4=[r1c9](=1=[r3c8]-
-1-[r3c6])-4-[r1c123]=4=[r3c23]-4-[r3c6]-5-[r4c6]=5=[r4c5]=7=[r6c4],
=> r6c4=7.
3. In this step I have used the AUR in cells r27c78:
[r8c7]-6-[r45c7]-4-[r2c7]=4|6=[r7c78]-6-[r8c7], => r8c7<>6.
4. In this step let's start by noting that r8c5=2 or r3c6=5, because if r8c5 is not "2" and r3c6 is not "5", then:
{TILA: [r2c8]-7-[r7c8]-6-[r7c7]=6=[r4c7]=9=[r5c7]=4=[r5c12]-4-[r4c1]-
-2-[r8c1]-6-[r8c5]-1-[r7c4]=1=[r1c4]-1-[r1c9]-4-[r2c7]-7-[r2c8], =>
r2c8<>7; [r2c8]-5-[r2c4]-4-[r3c6]-1-[r3c8]-5-[r2c8], => r2c8<>5 =>
r2c8=7}.
Ok. So this means that we have here the link "[r8c5]=2|5=[r3c6]". We can now use it in the following discontinuous multiple implication loop:
[r8c5]=2|5=[r3c6](-5-[r79c6])-5-[r4c6](-8-[r9c6](-4-[r7c6])-4-[r9c3]-6-
-[r8c13]-1-[r8c5])(-8-[r5c456]-(UR:r57c56)-1,2-[r7c5])=5=[r4c5]-5-
-[r79c5]-6-[r8c5], => r8c5<>1,6 => r8c5=2.
5. To finnish the puzzle the following XY-Wing is enough:
[r2c8]-5-[r2c4]-4-[r3c6]-1-[r3c8]-5-[r2c8], => r2c8<>5
and the puzzle is solved.
Good job JPF, this is a very good puzzle.
Carcul